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Abstract— In real-world games involving autonomous agents
making decisions under uncertainty [1], the agents are often
subject to sensing and communication limitations. In these
cases, it is desirable to win the game, while also minimizing
an agent’s sensing budget. In particular, in two-player un-
certain adversarial environments, where one player enters the
opponent’s territory, we seek a wining strategy with minimum
sensing. In this paper, we consider finite two-player stochastic
games, wherein in addition to the conventional cost over states
and actions of each player, we include the sensing budget
in terms of transfer entropy. We find a set of pure and
mixed strategies for such a game via dynamic programming.
The application of dynamic programming leads to a set of
coupled nonlinear equations that we solve using the modified
Arimoto-Blahut algorithm. The efficacy of the proposed method
is illustrated by a stochastic unmanned aerial vehicle (UAV)
pursuit-evasion game example using the tool AMASE.

I. INTRODUCTION

Stochastic games, introduced by Shapely [2], are dynamic
games over a sequence of stages with probabilistic transi-
tions. At the beginning of each stage the game is in some
state. The players select actions and each player receives
a payoff that depends on the current state and the chosen
actions. The game then moves to a new random state, whose
distribution depends on the previous state and the actions
chosen by the players. Stochastic games can be used to
model and analyze discrete systems operating in an unknown
(adversarial) environment. Applications of such games run
the gamut of computer networks [3] to economics [4].

In practice, however, the players have a limited sensing
or information budget, since information acquisition, pro-
cessing, and transmission are costly operations [1]. Hence,
within a stochastic game setting, the players should design
strategies while taking into account sensing and information
resources, such as sensors, satellites, and etc.

A Markov decision process (MDPs) [5] is a stochastic
game with just one player. Sensing and information optimal
policies have been studied in the framework of MDPs. En-
tropy maximization have been used in reinforcement learning
to maximize exploration in the presence of multimodal
objectives through randomized policies [6], [7], [8], and
was applied to carry out robotic tasks [9]. In another vein,
recently in [10], [11], the authors considered a notion from
information theory called the transfer entropy [12] to char-
acterizes the information flow from the states of the MDP to
the policy of the agent (see also [13] and [14] where transfer
entropy was used to analyze communication channels with
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feedback and memoryless networks, respectively). It was also
demonstrated that introducing the additional transfer entropy
cost to the MDP leads to a randomized policy.

In this paper, we build upon the results in [10], [11]
and consider two-player, finite stochastic games with sensing
costs in terms of transfer entropy. We demonstrate that such a
game has an optimal mixed strategy for the good player and
an optimal pure strategy for the adversary. We apply dynamic
programming and obtain a set of nonlinear equations, involv-
ing a finite number of variables, that the optimal strategies
satisfy. We propose a modified version of the Arimoto-Blahut
algorithm [15] for solving these nonlinear equations. We
show the efficiency of the proposed methodology by applying
it to a stochastic UAV pursuit-evasion game example based
on the tool AMASE.

The rest of the paper is organized as follows. We describe
the stochastic game we study in this paper in Section II. In
Section III, we calculate a set of coupled nonlinear equations
that the optimal strategies satisfy and propose an iterative
algorithm for solving them. In Section IV, we apply the
proposed method to a case study of UAVs tracking a ground
vehicle. Finally, in Section V, we conclude the paper and
provide directions for future research.

Notation: The notations employed in this paper are rel-
atively straightforward. R≥0 denotes the set [0,∞). For a
sequence x, we write xt to denote (x1, x2, . . . , xt). Upper
case symbols such as X are used to represent random
variables, while lower case symbols such as x are used to
represent a specific realization. We use the natural logarithm
log(·) = loge(·) throughout the paper.

II. PROBLEM FORMULATION

Let T = {1, 2, . . . , T} be a stage (time) index set. We
consider a finite, two-player stochastic game given by a tuple
({Xt}t∈T , {Ut}t∈T , {Wt}t∈T , {p}t∈T , {ct}t∈T ), where Xt
denotes the state space at stage t, Ut is the (good) player
action space at stage t, Wt is the adversary action space at
stage t, pt+1(xt+1 | xt, ut, wt) are transition probabilities to
a new state given current state and actions at stage t, and ct :
Xt×Ut×Wt → R the payoff function at stage t. We assume
that the sets Xt, Ut, andWt are all finite. We consider mixed
control strategies that can be represented by conditional
probability distributions of the form qt(ut | xt, ut−1). Simi-
larly, we consider mixed adversary strategies represented by
qt(wt | xt, wt−1). The joint distribution µt+1(xt+1, ut, wt)
of the state, control and adversary trajectories is uniquely
determined by the initial state distribution p1(x1), the state
transition probability pt+1(xt+1 | xt, ut, wt), player strategy



distribution qt(ut | xt, ut−1), and adversary strategy distri-
bution qt(wt | xt, wt−1) by the recursive formula

µt+1(xt+1, ut, wt) = pt+1(xt+1 | xt, ut, wt)
× qt(ut | xt, ut−1)qt(wt | xt, wt−1)µt(xt, ut−1, wt−1),

(1)

which represents the game dynamics. In a standard, fi-
nite, two-player stochastic game, we seek to find strategies
that (antagonistically) operate on the total payoff function

J(XT+1, UT ,WT ) :=∑
t∈T

E ct(Xt, Ut,Wt) + E cT+1(XT+1). (2)

Then, the game has a value if

min
{qut }t∈T

max
{qwt }t∈T

J(XT+1, UT ,WT )

= max
{qwt }t∈T

min
{qut }t∈T

J(XT+1, UT ,WT ). (3)

where qut = qt(ut | xt, ut−1) and qwt = qt(wt | xt, wt−1) for
notational convenience. It was shown in [16], [17] that any
finite stochastic game has a value. Furthermore, if there is
a finite number of players and the action sets and the set of
states are finite, then a stochastic game with a finite number
of stages always has a Nash equilibrium.

In this study, we additionally consider sensing costs in
terms of transfer entropy [18] given by

I(XT → UT ) =
∑
t∈T

I(Xt;Ut | U t−1),

where the conditional mutual information term I(Xt;Ut |
U t−1) is described as

I(Xt;Ut | U t−1) =∑
X t+1

∑
Ut

µt+1(xt+1, ut) log
µt+1(ut | xt, ut−1)

µt+1(ut | ut−1)
.

Our goal is to find strategies {qut }t∈T and {qwt }t∈T that
solve the following class of stochastic games

min
{qut }t∈T

max
{qwt }t∈T

J(XT+1, UT ,WT )

+
1

γ1
I(XT → UT )− 1

γ2
I(XT →WT ), (4)

where γ1, γ2 > 0. In particular, in this paper, we are
interested in the case γ2 → ∞, since we assume the
adversary has full access over its states. That is, the following
stochastic game

min
{qut }t∈T

max
{qwt }t∈T

J(XT+1, UT ,WT )+
1

γ1
I(XT → UT ).

(5)

The above stochastic game formulation can be compared
to the one in [19], where the authors considered two-
player stochastic games with bounded rationality represented
by Kullback-Leibler (KL) constraints between each agent’s
strategy and a reference one. Unlike stochastic games with

bounded rationality, there is no need to specify a predefined
reference strategy in our framework and we are rather
interested in penalizing sensing.

III. COMPUTING OPTIMAL STRATEGIES

In this section, we calculate the optimal strategies to (5)
and the corresponding optimal payoff function at each stage.
These solutions are used to find a set of nonlinear equations
for the dynamic game based on dynamic programming.

In order to apply dynamic programming, we use the
following result.

Proposition 1: Let X , U , and W be random variables
assuming values in X , U , and W , respectively. Let c :
X ×U ×W → R be an arbitrary function and a probability
distribution p(x) on X be given. Consider the following
optimization problem

min
q(u|x)

max
q(w|x)

Ec(X,U,W ) +
1

γ1
I(X;U)− 1

γ2
I(X;W ), (6)

where I(X;U) =
∑
X ,U p(x)q(u | x) log q(u|x)∑

X p(x)q(u|x)
and

I(X;W ) =
∑
X ,U p(x)q(w | x) log q(w|x)∑

X p(x)q(w|x)
. Then,

there exist an optimal solution to optimization problem (6),
and the optimal solutions satisfy the following equalities
p(x)-almost everywhere

q∗(w | x) =
µ∗(w) exp (γ2

∑
U q
∗(u | x)c(x, u, w))∑

W µ∗(w) exp (γ2
∑
U q
∗(u | x)c(x, u, w))

(7)

q∗(u | x) =
ν∗(u) exp (−γ1

∑
W q∗(w | x)c(x, u, w))∑

U ν
∗(u) exp (−γ1

∑
W q∗(w | x)c(x, u, w))

,

(8)

µ∗(w) =
∑
X
p(x)q∗(w | x), (9)

ν∗(u) =
∑
X
p(x)q∗(u | x). (10)

Furthermore, as γ2 →∞, the optimal solution satisfies

q∗(w | x) =

1, w = w∗ = arg max
w∈W

c(x, ·, w),

0, w ∈ W \ {w∗},
(11)

q∗(u | x) =
ν∗(u) exp (−γ1c(x, u, w∗))∑
U ν
∗(u) exp (−γ1c(x, u, w∗))

, (12)

and the optimal value of (6) is given by

−1

γ1
Ep(x) log

(∑
U
ν∗(U) exp (−γ1c(X,U,W ∗))

)
. (13)

Proof: Please refer to Appendix.
Equation (11) in Proposition 1 implies that, at γ2 → ∞,
the adversary adopts a pure strategy as each stage. This
observation is consistent with the previous results on finite
stochastic games, that, without the an entropy cost, the finite
stochastic game problem has pure strategies [2].

It is straightforward to generalize the sufficient conditions
of Proposition 1 to the following optimization

min
q(u|x,z)

max
q(w|x)

Ec(X,U,W,Z) +
1

γ1
I(X;U | Z), (14)



where Z is a random variable taking values in Z and c :
X × U ×W ××Z → R. Using Proposition 1, we can find
the following necessary conditions

q∗(u|x, z) :=
ν∗(u | z) exp (−γ1 c(x, u, w∗, z))∑
U ν
∗(u | z) exp (−γ1 c(x, u, w∗, z))

,

(15)
wherein, w∗ = arg max

w∈W
c(x, ·, w, ·), and

ν∗(u | z) :=
∑
X
p(x, z)q∗(u|x, z). (16)

Defining the following partition function

φ∗(x, z) :=
∑
U
ν∗(u | z) exp (−γ1 c(x, u, w∗, z)) , (17)

then (13), in this case, changes to −1γ1 E
p(x,z) log (φ∗(X,Z)).

A. Necessary Optimality Conditions via Dynamic Program-
ming

Proposition 1 brings forward expressions for the optimal
strategies and the optimal cost function at a single stage
of the dynamic stochastic game (5). In what follows, we
demonstrate how we can use dynamic programming to find a
set of nonlinear equations, which solves the stochastic game
problem over the game horizon T . We carry out this by
backward iteration. Let

Vt(µt(x
t, ut, wt)) =

min max

T∑
l=t

{
Eµt cl(Xl, Ul,Wl)+

1

γ1
I(X l;Ul | U l−1)

}
,

(18)

For t = 1, . . . , T , the cost-to-go function satisfies the
following Bellman equation

Vt
(
µt
(
xt, ut−1, wt−1

))
=

min
qut

max
qwt

{
Eµt,q

u
t ,q

w
t ct(Xt, Ut,Wt)

+
1

γ1
I(Xt;Ut | U t−1) + Vt+1

(
µt+1

(
xt+1, ut, wt

))}
,

(19)

with terminal condition at stage t = T + 1 given by

VT+1

(
µT
(
xT+1, uT , wT

))
= EµT+1cT+1 (XT+1) . (20)

The next proposition indicates that the the cost-to-go
function has a special structure, which will be used in the
sequel.

Proposition 2: For each t ∈ T ∪ {T + 1}, there exists a
function φt(·) such that

Vt
(
µt
(
xt, ut−1, wt−1

))
=
−1

γ1
Eµt log

(
φt(Xt, U

t−1)
)
.

(21)
Proof: We prove by induction. The terminal condi-

tion (20) implies that φT+1(xT+1) = exp(−γ1cT+1(xT+1)).

Thus, (21) holds at stage T + 1. At this point, assume that
there exists a function φt+1(·) such that

Vt+1

(
µt+1

(
xt+1, ut, wt

))
=
−1

γ1
Eµt+1 log

(
φt(Xt+1, U

t)
)
.

Since Eµt+1(·) = Eµt,q
u
t ,q

w
t ,pt+1(·), the righthand side of the

above equation can be re-written as

−1

γ1
Eµt,q

u
t ,q

w
t

∑
Xt+1

pt+1(xt+1 | Xt, Ut,Wt)

× log
(
φt+1(xt+1, U

t)
)
.

Introducing the function

ρt(xt, u
t, wt) := ct(xt, ut, wt)

− 1

γ1

∑
Xt+1

pt+1(xt+1 | xt, ut, wt) log
(
φt+1(xt+1, u

t)
)
,

(22)

then the Bellman equation (19) can be written as

min
qut

max
qwt

{
Eµt,q

u
t ,q

w
t ρt(Xt, U

t,W t)+

1

γ1
I(Xt;Ut | U t−1)

}
, (23)

which is the same optimization problem as (14). Therefore,
necessary conditions for optimality are as follows

qot (wt|xt) =

1, wt = w∗t = arg max
wt∈Wt

c(xt, ·, wt),

0, wt ∈ Wt \ {w∗t },
(24)

qot (ut|xt, ut−1) =

ν∗(ut | ut−1) exp (−γ1 ρ(xt, u
t, wt∗))∑

Ut ν
∗(ut | ut−1) exp (−γ1 ρ(xt, ut, wt∗))

, (25)

νot (ut | ut−1) :=
∑
Xt

µt(xt|ut−1)qot (ut|xt, ut−1), (26)

µt(x
t | ut−1)-almost everywhere. Note that (24) is derived

by noting that ct(xt, ut, wt) is concave in wt and therefore
ρt(xt, u

t, wt) is also concave in wt. Then, with the partition
function defined as

φt(xt, u
t−1) =

∑
Ut

νot (ut | ut−1) exp
(
−γ1 ρ(xt, u

t, wt∗)
)
,

(27)
we have the optimal value

− 1

γ1
Eµt

{
log
(
φt(X

t, U t−1)
)}
.

From the expressions for (25) and (26), we can deduce that
we can find the optimal strategy by just considering

µt+1(xt+1, u
t, wt) =

∑
Xt

pt+1(xt+1 | xt, ut, wt)

× qt(ut | xt, ut−1)qt(wt | xt)µt(xt, ut−1, wt−1).

All in all, we can infer that the optimal solution of the
stochastic game (5) satisfies the set of nonlinear coupled
equations given in (28).



µ∗t+1(xt+1, u
t, wt) =

∑
Xt

pt+1(xt+1 | xt, ut, wt)qt(ut | xt, ut−1)qt(wt | xt)µt(xt, ut−1, wt−1), (28a)

ν∗t (ut | ut−1) =
∑
Xt

µ∗t (x
t|ut−1)q∗t (ut|xt, ut−1), (28b)

ρ∗t (xt, u
t, wt) = ct(xt, ut, wt)−

1

γ1

∑
Xt+1

pt+1(xt+1 | xt, ut, wt) log
(
φ∗t+1(xt+1, u

t)
)
, (28c)

q∗t (wt|xt) =

1, wt = w∗t = arg max
wt∈Wt

ct(xt, ·, wt),

0, wt ∈ Wt \ {w∗t }.
(28d)

φ∗t (xt, u
t−1) =

∑
Ut

ν∗t (ut | ut−1) exp

(
−γ1

∑
Wt

q∗t (wt | xt) ρ∗t (xt, ut, wt)
)
, (28e)

q∗t (ut|xt, ut−1) =
ν∗t (ut | ut−1) exp

(
−γ1

∑
Wt

q∗t (wt|xt) ρ∗t (xt, ut, wt)
)∑

Ut ν
∗
t (ut | ut−1) exp

(
−γ1

∑
Wt

q∗t (wt|xt) ρ∗t (xt, ut, wt)
) . (28f)

B. Solution Using the Modified Arimoto-Blahut Algorithm

In this section, following the footsteps of [20], [11],
we propose an algorithm for solving the coupled nonlinear
equations (28) with unknowns µ∗, ν∗, ρ∗, φ∗, qu∗ and qw∗.
We group the equations in (28) into two sets of equations,
i.e., equations (28a)-(28b) in one group and the rest in
another group. Given ρ∗, φ∗, qu∗ and qw∗, equations (28a)-
(28b) can be seen as the forward Kolmogorov equation,
which can be solved forward in time to obtain µ∗ and ν∗. On
the other hand, when µ∗ and ν∗ are fixed, equations (28c)-
(28f) represent the backward Bellman equation, which can
be solved backward in time to compute ρ∗, φ∗, qu∗ and qw∗.

We propose the following boot-strapping technique: first,
the forward computation of equations is carried out based
on the current best guess of ρ∗, φ∗, qu∗ and qw∗, and
then the backward computation of equations (28c)-(28f) is
performed based on the updated guess of µ∗ and ν∗. We then
repeat the forward-backward iteration until convergence. We
summarize this method in Algorithm 1. The convergence and
complexity properties of Algorithm 1 are discussed in [20].

ψB

−→
i

−→
j

ϕ

−→
i

θ

Blind spots

Target

ρ

Fig. 1: Schematic diagram of a UAV with a mounted camera.

IV. CASE STUDY: UAV PURSUIT-EVASION SCENARIO

We present a case study of a UAV vision-based target
tracking task of a ground vehicle which can be modeled as
a stochastic pursuit-evasion game. The goal of the UAV is
to keep the adversarial ground vehicle in the field of view of
its camera. We use a modified version of the target tracking
problem presented in [21] and [22]. In [21], the vision-based
target tracking problem was set up as a two-payer stochastic
game and solved using dynamic programming. Here, we
include the additional sensing cost of transfer entropy to the
problem formulation.

A. Game Dynamics

We assume fixed altitude, fixed velocity UAV dynamics
also used in [22] described by the Dubins vehicle model.

dx = v cos(θ)dt (29)
dy = v sin(θ)dt (30)

dθ = udt (31)

where x, y are the coordinates of UAV position, θ is the
heading of the UAV, v is the constant velocity of the UAV,
and u ≤ u is the turn rate. The target is assumed to be a
ground vehicle that can also turn and has constant velocity
vg . The state of the target is xg, yg , and θg with the same
dynamics as the UAV with maximum turn rate ug .

The action space of the UAV is given by Ut = {−u, 0, u},
and the action space of the ground vehicle is Wt =
{−ug, 0, ug}.

We define the joint state of the game ηt = (ρ, ψ) ∈ Xt
to be the relative distance ρ and angle between the ground
vehicle and UAV ψ. As shown in [22], the relative position
is given by[

η1
η2

]
=

[
cos θg sin θg
− sin θg cos θg

] [
x− xg
y − yg

]
, (32)

and the relative angle or bearing is given by ψ =
tan−1(

xg−x
yg−y ). We then define the relative distance between



Algorithm 1 Forward-Backward Arimoto-Blahut Algorithm

1: q
(0)
t (wt | xt) and q(0)t (ut | xt, ut−1) for t ∈ T , . Initialize

2: φ
(k)
T+1(xT+1, uT+1) = exp(−γ1cT+1(xT+1)) for k = 1, 2, . . . ,K;

3: for k = 1, 2, ...,K (until convergence) do
4: for t = 1, 2, ..., T do . Forward Path
5: µ

(k)
t+1(xt+1, u

t, wt) =
∑
Xt
pt+1(xt+1 | xt, ut, wt)q(k−1)t (ut | xt, ut−1)q

(k−1)
t (wt | xt)µ(k)

t (xt, u
t−1, wt−1);

6: ν
(k)
t (ut | ut−1) =

∑
Xt
µ
(k)
t (xt|ut−1)q

(k−1)
t (ut|xt, ut−1);

7: for t = T, T − 1, ..., 1 do . Backward Path

8: q
(k)
t (wt|xt) =

1, wt = w∗t = arg max
wt∈Wt

ct(xt, ·, wt),

0, wt ∈ Wt \ {w∗t }
;

9: φ
(k)
t (xt, u

t−1) =
∑
Ut ν

(k)
t (ut | ut−1) exp

(
−γ1

∑
Wt

q
(k)
t (wt | xt) ρ(k)t (xt, u

t, wt)
)

;

10: ρ
(k)
t (xt, u

t, wt) = ct(xt, ut, wt)− 1
γ1

∑
Xt+1

pt+1(xt+1 | xt, ut, wt) log
(
φ
(k)
t+1(xt+1, u

t)
)

;

11: q
(k)
t (ut|xt, ut−1) =

ν
(k)
t (ut|ut−1) exp

(
−γ1

∑
Wt

q
(k)
t (wt|xt) ρ

(k)
t (xt,u

t,wt)
)

∑
Ut
ν
(k)
t (ut|ut−1) exp

(
−γ1

∑
Wt

q
(k)
t (wt|xt) ρ

(k)
t (xt,ut,wt)

) ;

12: return q
(K)
t (wt | xt) and q(K)

t (ut | xt, ut−1) for t ∈ T .

the target and UAV as ρ =
√
η21 + η22 . We note that the

overall dynamics of the state (η1, η2, η3) is captured in the
dynamics of (x, y, θ), and (xg, yg, θg).

B. Cost objective

We model the UAV as having a camera on a gimbal
mounted on the underside of its body. If the camera is pointed
at the back of the UAV, it will be blocked by the landing
gear and hence there exists a blind spot in that region. This
is illustrated in Figure 1. The requirements for the vision-
based target tracking are two-fold. We want the UAV to
follow the ground vehicle at a prescribed distance ρc and
we want to ensure the ground vehicle is not in the blind spot
region of the UAV. We capture this using the cost function
ct = c1(ρ) + c2(ψ) where

c1(ρ) = β1(ρ− ρc)2 (33)

c2(ψ) =

{
0 ψ /∈ ψb
β2 ψ ∈ ψb

(34)

where ψb is the set angles that constitute the blind spot of the
UAV and β1, β2 ∈ R are constants. Hence, ct incentivises
the UAV to keep the target as close to distance ρc as possible
and not allow the target to enter the blind spot.

C. Results

We use the UAV simulation environment OpenAMASE
developed at Air Force Research Laboratory1. The problem
formulation deals with a discrete and finite state space. We
thus discretize the state space as follows. ρ = {0,∆ρ+2∆ρ+
. . . , 10ρc} and ψ = {0,∆ψ,∆ψ, . . . , 2π} where ∆ρ,∆ψ are
the discretization parameters. The parameters we use for the
test are summarized in Table I. We note that it is typically
assumed that v > vg as otherwise the tracking task is not

1Available online at https://github.com/afrl-rq/
OpenAMASE.

v vg u ug ρc ∆ρ ∆ψ

20 10 0.34 rad/s 0.5 rad/s 300 m 10 m π
8
rads

TABLE I: Experiment parameter values.

Fig. 2: Snapshot of simulation on AMASE. The purple and
blue UAVs are tracking the green target ground vehicle. The
purple UAV has no sensing cost. The corresponding colored
polygons in front of the respective UAVs are the sensor
footprint of the camera and the polygons behind the UAV
represent the camera blindspots.

possible as the target will always be able to escape. We
also assume there is no wind or other sources of noise. The
UAV is penalized in knowledge of the state of the game,
i.e., strategies that rely more heavily on knowledge of the
relative distance and heading are penalized. However, the
target always has full knowledge of the system. We compare
this case to the situation where this is no information cost
and the UAV also has full state information.

In the example, we set β1 << β2. As can be seen in
Figure 3a, in the presence of sensing cost, the UAV typically
maintains a larger distance from the target. This is because
this the target entering the blind spot of the gimbal mounted
camera is penalized more heavily than maintaining the ρc
distance. As the target has a faster turn rate and the UAV
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(b) Bearing from the UAVs to the target over time.

Fig. 3: Graphs of distance and bearing from the UAVs to
the target in both the without-sensing-cost (in red) and with-
sensing-cost (in blue) cases.

has a minimum turn radius of v
u m, not getting too close

gives the UAV more time and space to react to the target
potentially manouevering towards the blind spot. Note that
the results without any sensing cost are similar to those seen
in [21] and [22].

V. CONCLUSIONS AND FUTURE WORK

We considered two-player stochastic games with addi-
tional sensing costs in terms of transfer entropy. We derived
a set of nonlinear equations that the optimal strategies satisfy
and presented a method for computing them using the mod-
ified Arimoto-Blahut algorithm. We applied the proposed
methodology to a UAV pursuit-evasion stochastic game.

Prospective research will focus on following the footsteps
of our previous work [11] to additionally allow for high-level
mission specifications in terms of co-safe linear temporal
logic formulae. Moreover, extending the current work to
partially observable stochastic games and stochastic games
with bounded rationality are interesting open problems.
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APPENDIX

PROOF OF PROPOSITION 1

Since we consider a finite number of states and decisions,
we rewrite (6) as

L =
∑
ijk

piQijQikcijk +
1

γ1

∑
ij

piQij log
Qij∑

i′ p
i′Qi′j

− 1

γ2

∑
ik

piQik log
Qik∑

i′ p
i′Qi′k

, (35)

where I , J , and K are the index sets of states, control
actions, and adversary actions, respectively, and Qij = q(u |
x), Qik = q(w | x), cijk = c(x, u, w), and pi = p(x). Then,
the optimization problem we ought to solve can be described
as

min
{Qij}i∈I,j∈J

max
{Qik}i∈I,k∈K

L. (36)

The above optimization problem is also subject to the follow-
ing constraints on the controller and the adversary probability



distributions ∑
j∈J

Qij = 1, (37)∑
k∈K

Qik = 1. (38)

We split the proof into two parts. In the first part, we study
the problem when γ1, γ2 6=∞, and then, in the second part,
we show how the results change as γ2 →∞.

A. Case 1: γ1, γ2 6=∞.

Objective function L is a continuous function, convex
in Qij and concave in Qik, and Qij and Qik take values
in a compact set (any finite set is a compact). By von
Neumann’s minimax theorem [23], the following strong
minimax property holds

min
{Qij}i∈I,j∈J

max
{Qik}i∈I,k∈K

L = max
{Qik}i∈I,k∈K

min
{Qij}i∈I,j∈J

L.

In order to solve optimization problem (36) subject
to equality constraints (37) and (38), we write down
the Lagrangian as F = L + λipi

(∑
j Q

ij − 1
)

+

αipi
(∑

kQ
ik − 1

)
, where λi and αi, i ∈ I are the La-

grange multipliers. We begin by maximizing F with respect
to Qik. Taking the derivative of F with respect to Qik yields

∂F

∂Qik
= pi

∑
j

Qijcijk

− 1

γ2

(
pi log

Qik∑
i′ p

i′Qi′k
− piQik 1

Qik

+ piQik
pi∑

i′ p
i′Qi′k

+
∑
i 6=i′

pi
′
Qi
′k pi∑

i′ p
i′Qi′k︸ ︷︷ ︸

pi

)
+ αipi.

Simplifying the above terms gives

∂F

∂Qik
= pi

∑
j

Qijcijk − 1

γ2
log

Qik

µk
+ αi


where µk =

∑
i′ p

i′Qi
′k. If we equate ∂F

∂Qik = 0, we obtain

pi

∑
j

Qijcijk − 1

γ2
log

Qik

µk
+ αi

 = 0.

If pi = 0, that state is of no concern in maximizing
or minimizing the objective function. Therefore, we are
concerned with the cases when pi > 0. We have then∑

j′

Qij
′
cij
′k − 1

γ2
log

Qik

µk
+ αi = 0,

and, by re-arranging the terms, we obtain an expression for
the optimal adversary distribution

Qik = µk exp

γ2αi + γ2
∑
j′

Qij
′
cij
′k

 .

Summing both sides of the above expression over k ∈ K
and applying constraint (38), we get

Qik =
µk exp

(
γ2
∑
j′ Q

ij′cij
′k
)

∑
k′ µ

k′ exp
(
γ2
∑
j′ Q

ij′cij′k′
) , (39)

which is the same as equation (7). Plugging this solutions
back into the term

∑
ik p

iQik log Qik∑
i′ p

i′Qi′k in L as in (35)
gives

∑
ik

piQik log
Qik∑

i′ p
i′Qi′k

=
∑
ik

piQik log
exp

(
γ2
∑
j Q

ijcijk
)

∑
k µ

k exp
(
γ2
∑
j Q

ijcijk
)

=
∑
ik

(
γ2p

iQik
∑
j

Qijcijk

− piQik log
(∑

k′

µk
′
exp

(
γ2
∑
j

Qijcijk
′)))

= γ2
∑
ijk

piQikQijcijk

−
∑
i

pi log

∑
k′

µk
′
exp

γ2∑
j

Qijcijk
′

 .

Substituting the above term back in L leads to

L = min
Qij

1

γ1

∑
ij

piQij log

(
Qij∑

i′ p
i′Qi′j

)

+
1

γ2

∑
i

pi log

∑
k

µk exp

γ2∑
j

Qijcijk

 (40)

In order to find Qij∗ , we compute the derivative of F with
respect to Qij with L as in (40) as follows

∂F

∂Qij
=

1

γ1

(
pi log(Qij) + piQij

1

Qij
− pi log(νj)

piQij
pi∑

i′ p
i′Qi′j

+
∑
i 6=i′

pi
′
Qi
′j pi∑

i′ p
i′Qi′j︸ ︷︷ ︸

pi

)

+ pi

∑
k µ

kcijk exp
(
γ2
∑
j Q

ijcijk
)

∑
k µ

k exp
(
γ2
∑
j Q

ijcijk
) + λipi

+ pi
∂Qik∗
Qij

log

∑
k

µk exp

γ2∑
j

Qijcijk


︸ ︷︷ ︸

=0



where, νj =
∑
i′ p

i′Qi
′j . Then, we have

pi

(
1

γ1
log

(
Qij

νj

)

+

∑
k µ

kcijk exp
(
γ2
∑
j Q

ijcijk
)

∑
k µ

k exp
(
γ2
∑
j Q

ijcijk
) + λi

)
= 0.

Since we are interested in the cases when pi > 0, we obtain

1

γ1
log

(
Qij

νj

)
+

∑
k µ

kcijk exp
(
γ2
∑
j Q

ijcijk
)

∑
k µ

k exp
(
γ2
∑
j Q

ijcijk
) +λi = 0.

Solving for Qij gives

Qij =

νj exp

−γ1λi − γ1
∑
k µ

kcijk exp
(
γ2
∑
j Q

ijcijk
)

∑
k µ

k exp
(
γ2
∑
j Q

ijcijk
)
 .

Summing both sides of the above expression over j and
applying the constraint (37), we find the optimal strategy
distribution

Qij∗ =

νj exp

(
−γ1

∑
k µ

kcijk exp(γ2
∑

j Q
ijcijk)∑

k µ
k exp(γ2

∑
j Q

ijcijk)

)
∑
j ν

j exp

(
−γ1

∑
k µ

kcijk exp(γ2
∑

j Q
ijcijk)∑

k µ
k exp(γ2

∑
j Q

ijcijk)

) .
From (39), we have

Qij∗ =
νj exp

(
−γ1

∑
k′ Q

ik′

∗ cijk
′
)

∑
j′ ν

j′ exp (−γ1
∑
k′ Q

ik′
∗ cij′k′)

, (41)

which is the same as equation (8). Substituting the Qij∗ into
(40) yields

L∗ =
∑
ijk

piQij∗ Q
ik
∗ c

ijk

− 1

γ1

∑
i

pi log

∑
j

νj∗ exp

(
−γ1

∑
k

Qik∗ c
ijk

)
+

1

γ2

∑
i

pi log

∑
k

µk∗ exp

γ2∑
j

Qij∗ c
ijk

 .

(42)

B. Case 2: γ2 →∞.

We compute the limit of the calculated quantities in the
previous section as γ2 →∞.
• Calculating Qik∗ :

lim
γ2→∞

Qik∗ = lim
γ2→∞

µk exp
(
γ2
∑
j′ Q

ij′cij
′k
)

∑
k′ µ

k′ exp
(
γ2
∑
j′ Q

ij′cij′k′
)

=
µk∑
k′ µ

k′
lim
γ2→∞

exp

γ2∑
j′

Qij
′

∗ (cijk − cij′k∗)

 ,

where k∗ = arg maxk c
i,·,k or equivalently w∗ =

arg maxw∈W c(x, ·, w). Since c is concave in w such
k always exists. We can find the optimal adversary
strategy by solving the following equation

Qik∗ =

∑
i′ p

i′Qi
′k
∗∑

k

∑
i′

pi
′
Qi
′k
∗︸ ︷︷ ︸

=1

× lim
γ2→∞

exp

γ2∑
j′

Qij
′

∗ (cijk − cij′k∗)


=

µ
k∗ = 1, k = k∗ = arg max

k∈K
ci,·,k,

0, k ∈ K \ {k∗},
(43)

which is indeed a pure strategy as expected.
• Computing the optimal value function L∗: To this end,

we compute the limit for the last term on the right hand
side of (42) as γ2 →∞. That is,

lim
γ2→∞

1

γ2

∑
i

pi log

∑
k

µk∗ exp

γ2∑
j

Qij∗ c
ijk


=
∞
∞ . (44)

Thus, we apply the L’Hospital’s rule

lim
γ2→∞

∑
i

pi

∑
k µ

k
∑
j Q

ijcijk exp
(
γ2
∑
j Q

ij
∗ c

ijk
)

∑
k µ

k
∗ exp

(
γ2
∑
j Q

ij
∗ cijk

)
=
∑
i

∑
j

piQij
∑
k

µk∑
k′ µ

k′

× lim
γ2→∞

exp

γ2∑
j′

Qij
′

∗ (cijk − cij′k∗)

 cijk.

From (33), we infer that the right-hand side of the above
expression equals∑

ij

piQijQik
∗
cijk

∗

If we plug in the above expression into (42), we find
the optimal value function

L∗ = − 1

γ1

∑
i

pi log

∑
j

νj∗ exp
(
−γ1Qik

∗

∗ cijk
∗
) ,

which is the same as equation (13).
• Computing the optimal protagonist strategy Qij∗ : We

substitute Qik∗ as computed above in (33) obtaining

Qij∗ =
νj exp

(
−γ1Qik

∗

∗ cijk
∗)∑

j′ ν
j′ exp (−γ1Qik∗∗ cij′k∗)

,

which is identical to equation (12).


