
 
International Review of Automatic Control (I.RE.A.CO.), Vol. 4, N. 3 

May 2011 

Manuscript received and revised April 2011, accepted May 2011                                Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved 

328 

Enhanced Particle Filtering for Nonlinear State Estimation 
via Invasive Weed Optimization 
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Abstract – In this paper, an enhanced version of the particle filtering (PF) technique using the 
invasive weed optimization (IWO) algorithm is proposed. Due to the fact that sampling from the 
posterior distribution in PF algorithm is a sub-optimal approach, it is vulnerable to estimation 
errors. To avoid such approximation errors, this paper suggests incorporating the IWO algorithm 
by translating the sampling step into a nonlinear optimization problem. By defining an 
appropriate fitness function, the optimization problem is readily handled. The functionality of the 
proposed method is evaluated against several examples through simulation analysis. It is 
demonstrated that applying the suggested IWO enhanced PF algorithm (PFIWO) would lead to 
superior estimation performance. Copyright © 2011 Praise Worthy Prize S.r.l. - All rights 
reserved. 
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Nomenclature 

kx  The state vector with probability distribution 
of ( )1k kp x x −  which is not directly 

measurable 
ky  The noise corrupted observation with 

likelihood ( )k kp y x  
ix  thi drawn sample from a probability 

distribution 
iF  The fitness of the thi weed or particle 

k  The discrete time instance 
N  The number of particles 
n  The nonlinear modulation index in the IWO 

algorithm 
effN  The effective sample size associated with the 

weights 

I. Introduction 
A large group of models in signal processing can be 

represented by a state-space form in which prior 
knowledge of the system is available. 

This prior knowledge allows us to exploit a Bayesian 
approach. Within this statistical framework, one can 
perform inference on the unknown states according to 
the posterior distribution. In most cases, the observations 
arrive sequentially in time, and one is interested in 
recursively estimating the hidden states from the time-
varying posterior distribution. This problem is referred as 
the optimal filtering problem [1],[2]. 

Owing to the mathematical complexity, only few 
specific  models  (including  linear Gaussian  state-space 

models and finite state-space hidden Markov models 
(HMM) [3]) can be adopted to reach an analytical 
solution. The popular Kalman filter (KF) [1] and the 
renowned HMM filter [3] provide close form solutions to 
the latter models. 

In many real-life applications, however, the models 
possess nonlinearity and non-Gaussian behavior. 
Therefore, an optimal solution to the filtering problem 
cannot be achieved. Over the last decades, several sub-
optimal filtering methods such as the extended Kalman 
filter (EKF), and the unscented Kalman filter (UKF) 
have been proposed in open literature [4]. But, these 
filtering algorithms suffer from the curse of 
dimensionality, that is, they perform poorly as the 
dimension of the model states increases. Furthermore, 
the rate of convergence of the approximation error 
decreases dramatically for large state dimensions, say 4 
[5]. 

The particle filter (PF) first brought forward by 
Gordon et al. [5] utilizes a set of N  random samples (or 
particles) to approximate the posterior distribution. The 
particles are evolved over time via a combination of 
importance sampling and resampling steps. In a few 
words, the resampling step statistically multiplies and/or 
discards particles at each time step to adaptively 
concentrate particles in the regions of high posterior 
probability [6]. 

Recently, there exists an active research on the subject 
of integrating meta-heuristic algorithms in PF. In [7], 
Tong et al. proposed an optimized PF based on particle 
swarm optimization (PSO) algorithm which exposed 
improved estimation accuracy. Many subsequent studies 
also followed the same trend using the PSO method; e.g., 
refer to [8],[9]. 
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This paper considers the implementation of the IWO 
algorithm as a means to optimizing the PF method. Since 
sampling in PF is performed in a sub-optimal manner, it 
can bring about some performance defects such as 
sample impoverishment [4]. Using a suitable fitness 
function for particles, such problems are circumvented 
and an enhanced PF algorithm is achieved thanks to the 
IWO approach. The functionality of the combined 
method is verified using two nonlinear state estimation 
problems. 

The rest of this paper is organized as follows. Section 
II considers a concise description of the filtering problem 
and the basic particle filtering algorithm. The IWO 
algorithm is outlined in section III. The proposed 
PFIWO method is discussed in section IV. Results based 
on the PFIWO algorithm are addressed in section V. 
Section VI concludes the paper. 

II. The Particle Filter 
II.1. The Filtering Problem 

Consider the general class of nonlinear non-Gaussian 
systems with state-space model as described below: 

 

 ( ) ( )1 1 1 1k k k k k k kx f x ,u ,v , x ~ p x x− − − −=  (1) 

 

 ( ) ( )k k k k k k ky g x ,u ,w , y ~ p y x=  (2) 

 
where the subscript k  denotes the time instance. 
( )f ⋅ and ( )g ⋅ are generally nonlinear functions. kx is the 

system state with probability distribution of 
( )1k kp x x − which is not directly measurable, and ky  is 

the noise corrupted observation with likelihood 
( )k kp y x . This structure is illustrated in Fig. 1. 

 

 
 

Fig. 1. A graphical representation of the state-space model 
described by Eq. (1) 

 
u  stands for known inputs.  v  and w  represent the 

process and measurement noise, respectively. Filtering is 
the task of sequentially estimating the states (parameters 
or hidden variables) of a system as a set of observations 
become available on-line [1], [3]. In other words, 
filtering is aimed at estimating the posterior distribution 

( )k kp x y  as a set of observations ( )1 2
T

k kY y , y , , y= …  
becomes available.  

The Bayesian solution to the filtering problem consists 
of two stages [1], [3], [4]: 

1) Prediction: using the prior density function and the 
Chapman-Kolomogrov equation we have: 

 
 ( ) ( ) ( )1 1 1 1 1k k k k k k kp x y p x x p x y dx− − − − −= ∫  (3) 

 
2) Correction: based on the Bayes’ formula: 
 

 ( ) ( ) ( )
( )

1

1

k k k k
k k

k k

p y x p x y
p x y

p y y
−

−

=  (4) 

 
The algorithm is initialized with ( ) ( )0 0 0p x y p x=  

and ( ) ( )1 0 1p x y p x= . One step operation of the 

Bayesian filtering is portrayed in Fig. 2. However, it is 
obvious that achieving a closed form analytical solution 
to the untraceable integral in Eq. (3) and therefore the 
solution to Eq. (4) is a cumbersome task. The problem 
becomes even more severe as the state dimensions 
increase. Thus, an optimal solution cannot be attained 
except under very restricting conditions (linear transition 
functions and Gaussian noise) using the well-known KF. 
The interested reader can refer to [1],[3] for more 
information on optimal solutions which provide a 
comprehensive theoretical overview of available 
methods. Sub-optimal solutions exist for rather general 
models with nonlinear evolution functions and non-
Gaussian noises [4]. Nevertheless, due to the nature of 
these methods (e.g. EKF and UKF) which are based on 
local linearization, the estimation performance is, more 
or less, limited. Estimation techniques established upon 
sequential Monte Carlo methods, namely the PF, are a 
promising alternative to local linearization algorithms. 
 

 
 

Fig. 2. The Bayesian approach to filtering problem 

II.2. The Monte Carlo Method 

In the Monte Carlo technique, one is concerned with 
estimating the properties of some highly complex 
probability distribution ( )p x , e.g. expectation: 

 

 ( )( ) ( ) ( )E s x s x p x dx= ∫  (5) 
 
where ( )s x  is some useful function for estimation. In 
cases where this cannot be obtained analytically, the 
approximation problem can be handled indirectly. It is 
possible to represent ( )p x  by a set of random samples 

1 2ix ,i , , ,N= … . Consequently, the Monte Carlo 
representation is [10]: 
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 ( ) ( )
1

1 N
i

i
p x x x

N
δ

=

= −∑  (6) 

 
where ( )δ ⋅  is the Dirac delta function. Then, the 
expectation can be reformulated as: 
 

 

( )( ) ( ) ( )

( ) ( )

( )
1

1

1

1

N
i

i
N

i

i

E s x s x p x dx

s x x x dx
N

s x
N

δ
=

=

= ≈

≈ −

=

∫

∑∫

∑

 (7) 

 
Alternatively, suppose that the samples ix are drawn 

from a distribution ( )q x instead of ( )p x . Now, the 
expectation can be estimated using importance sampling 
as follows [10]: 
 

 

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1 1

1

1 1

N
i

i
iN N

i i
ii

i i

q x p x
E s x s x p x dx s x dx

q x

p x
s x x x dx

q x N

p x
s x w s x

N Nq x

δ
=

= =

= =

≈ −

= =

∫ ∫

∑∫

∑ ∑

 (8) 

 

where 
( )
( )

i

i i

p x
w

q x
∝  is the importance weight. So, ( )p x  

can be estimated as: 
 

 ( ) ( )
1 1

1
N N

i
i i

i i
p x w x x , s.t. wδ

= =

= − =∑ ∑  (9) 

II.3. The Basic Particle Filter 

Consider equations (3) and (4). This discussion is 
proceeded by reformulating the latter equations based on 
the Monte Carlo approximation described in the previous 
section. Let ix , 1 2i , , ,N= … be the drawn samples from 
the posterior distribution ( )k kp x y . The filter is 
initialized as [7]: 

 
 ( )0 0 0 1 2ix ~ p x y , i , , ,N= …  (10) 

 
Then, for 1 2k , ,= …  we have: 

 

 ( ) ( )
1 1

1
N N

k i k
k k i k i

i i
p x y w x x , s.t. wδ

= =

= − =∑ ∑  (11) 

For 1 2i , , ,N= … sample from the proposal 

distribution ( )1
i

k kq x x −  as: 

 
 ( )1

i i
k k kx ~ q x x −  (12) 

 
Subsequently, update the importance weights: 

 

 
( ) ( )

( )
1 11

1

i i i
k k k kk k

i i i
k k

p y x p x x
w w

q y x

− −−

−

=  (13) 

 
Provided that ( ) ( )1 1k k k kp x x q x x− −= , equations (12) 

and (13) converts to: 
 
 ( )1

i i
k k kx ~ p x x −  (14a) 

 
 ( )1

1
k k i
i i k kw w p y x−

−=  (14b) 

 
Afterwards, for 1 2i , , ,N= … normalize the weights: 

 

 

1

k
k i
i N

k
j

j

w
w

w
=

=

∑
 (15) 

 
A prevalent problem with PF is the degeneracy 

phenomenon, wherein after few iterations, all but few 
particles will have trivial weights. A measure of 
degeneracy is the effective sample size effN  which can 
be empirically evaluated as: 
 

 

( )2
1

1
eff N

k
i

i

N̂
w

=

=

∑
 (16) 

 
The conventional approach to solve around the 

problem of sample degeneracy is to define a degeneracy 
threshold thN . If eff thN̂ N< , resampling should be 
initiated [4].  

III. The Invasive Weed Optimization 
The bio-inspired IWO algorithm was introduced by 

Mehrabian and Lucas [11] which imitates the colonial 
behavior of invasive weeds in nature. The IWO 
algorithm has shown to be virtuous in converging to 
optimal solution by employing some basic characteristics 
of weed colonization, e.g. seeding, growth and 
competition [12]. 
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III.1. Key Terms 

Prior to describing the IWO algorithm, the key terms 
are explained as follows: 
a. Seed: Each unit in the colony (here the particles) 

which encompasses a value for each variable in the 
optimization problem before fitness evaluation. 

b. Weed/Plant: any seed that is evaluated grows to a 
weed or plant. 

c. Fitness: a value corresponding to the goodness of 
each unit after being evaluated. 

d. Field: the search/solution space. 
e. Maximum weed population: a parameter preset 

representing the maximum number of possible weeds 
in the field after fitness assessment.   

III.2. The IWO Algorithm 

The process flow of the IWO algorithm is outlined 
below [11], [12]: 
1. Initialize the seeds T

ni sssS ),,,( 21 …= , where n  is 
the number of selected variables, over the search 
space. Consequently, each seed contains random 
values for each variable in the Dn −  solution space.  

2. The fitness of each individual seed is calculated 
according to the optimization problem, and the seeds 
grow to weeds able to produce new units. 

3. Each individual is ranked based on its fitness with 
respect to other weeds. Subsequently, each weed 
produces new seeds depending on its rank in the 
population. The number of seeds to be created by 
each weed alters linearly from minN to maxN which 
can be computed using the equation given below: 

 

 ( )

Number of seeds

i worst
max min min

best worst

F F
N N N

F F

=
−

= − +
−

 (17) 

 
in which iF is the fitness of thi weed. worstF , and 

bestF denote the best and the worst fitness in the weed 
population. This step ensures that each weed take part 
in the reproduction process. 

4. The generated seeds are normally distributed over the 
field with zero mean and a varying standard deviation 
of iterσ described by: 

 

 ( )0

n
max

iter f f
max

iter iter
iter

σ σ σ σ
⎛ ⎞−

= − +⎜ ⎟
⎝ ⎠

 (18) 

 
where maxiter and iter are the maximum number of 
iteration cycles assigned by the user, and the current 
iteration number respectively. 0σ  and fσ represent 
the pre-defined initial and final standard deviations. 
n  is called the nonlinear modulation index. In order 

to obtain a full and swift scan of possible values of 
standard deviation, it has been examined that the 
most appropriate value for nonlinear modulation 
index is 3 [12]. The fitness of each seed is calculated 
along with their parents and the whole population is 
ranked. Those weeds with less fitness are eliminated 
through competition and only a number of weeds 
remain which are equal to Maximum Weed 
Population. 

5. The procedure is repeated at step 2 until the 
maximum number of iterations allowed by the user is 
reached. 

IV. The Proposed PFIWO Algorithm 
In this section, we will first highlight some exclusive 

features of the IWO algorithm which convinced us to 
choose this meta-heuristic strategy as an optimizer for 
PF; afterwards, we will discuss the proposed PFIWO 
scheme. 

The IWO algorithm certifies that all possible 
candidates would participate in the reproduction process. 
In contrast, most meta-heuristic algorithms would not 
allow the less-fitted individuals to produce offspring 
such as the GA. Besides, the IWO algorithm is 
straightforward and it includes less deal of computational 
burden unlike other methods. As a good illustration, one 
can consider the PSO algorithm. PSO needs to update 
both the position and velocity of individuals in each 
iteration round which require some extra calculations to 
find the best position in the neighborhood of each 
particle as well as the whole population. The mentioned 
incentives persuaded us to integrate the IWO algorithm 
in PF. The modifications are delineated next. 

Owing to the fact that the sampling step of the 
conventional PF is sub-optimal, the IWO is suggested as 
a means to enhance the sampling step. Here, the goal of 
the IWO in the sampling step is to trace the particles 
which correspond to greater weights. Therefore, it is 
convenient to calculate the fitness of thi'  particle as: 

 

 
( ) ( )

( )
1 1

1

i i i
k k k ki

i
k k

p y x p x x
fitness

q y x

− −

−

=  (19) 

 
which in case of ( ) ( )1 1k k k kp x x q x x− −=  reduces to: 
 
 ( )1

i i
k kfitness p y x −=  (20) 

 
Consequently, the IWO algorithm’s task would be to 

maximize the fitness function. The sampling step is 
modified as follows: 
1. The fitness of each particle is evaluated, and the 

particles are ranked based on their fitness in the 
population; i.e., those particles which correspond to 
greater weights are of higher rank. 
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2. Perform steps 3, 4, and 5 of the IWO algorithm as 
described in section III until a predefined number of 
iteration cycles is reached. It is worth noting that 
since the basic PF is considerably time-consuming 
the maximum number of iteration cycles should be 
chosen as a compromise between estimation 
performance and algorithm run-time. 

3. Subsequently, the weights are updated and 
normalized using equations (14) and (15). 

4. In order to reproduce and pick out the particles with 
larger weights the resampling step is implemented. 
That is: 

 { }
1 1

1 NNi k i
k i ki i

x ,w x ,
N= =

⎧ ⎫= ⎨ ⎬
⎩ ⎭

 (21) 

V. Simulation Results 
V.1. Numerical Example 

This section discusses the results based on the method 
presented in this study. Both the PF and PFIWO 
algorithms are applied to estimate the hidden states in 
case of a nonlinear time-varying system perturbed by 
non-Gaussian noise and nonlinear time-varying sensor 
model. Suppose a Gamman probability distribution 
function given by: 
 

 ( )
( )

( )1

x

ep x, , x ~ gamma ,
β

α
αα β α β

β α

−

−=
Γ

 (22) 

 
where ( )Γ ⋅ represent the Gamma function, α is the 
shape parameter, and β is the scale parameter. Let 

2α = , and 3=β . This density function is used to 
characterize the noise associated with the model 
dynamics. Consider the following state-space system 
model: 
 

   

( )
( )

( )
( )

1
11

1
2 2

1 1 13 1 2 3

1 0 04 0 5

0 05 3 2

kk

k k

k k k k

sin . t . xx

x cos . x gamma ,

x x x sin x

π

π

−

−

− − −

⎡ ⎤⎡ ⎤ + +⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎢ ⎥⎣ ⎦

 (23) 

 
and the sensor model is: 
 
 ( )0 0 5k kz y N , .= +  (24a) 

 
in which: 

 

( )2
3

3

30
5

4
30

2

k

k

k

x
t

y
x

t

⎧
⎪ ≤⎪= ⎨
⎪ −

>⎪
⎩

 (24b) 

wherein superscript k accounts for discrete time, and 
( )0 0 5N , . is a zero mean Gaussian white noise with a 

variance of 0.5. The particle filter as discussed in section 
II is applied ( 50=N and 30thN = ). Additionally, the 
PFIWO method as described in section IV is similarly 
utilized. The corresponding values for different 
parameters regarding PFIWO algorithm are listed in 
Table I. 

TABLE I 
PARAMETERS USED IN THE PFIWO METHOD 

maxiter  0σ  fσ  maxN  minN  Max. 
Weed 

Number 
20 0.1 0.00001 5 1 50 

 
Note that the Max. Weed Number should be equal to 

the number of particles N . The state estimation results 
are also portrayed in Figs. 3. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figs. 3. The estimation performance of the PF and PFIWO Algorithms. 

(a) x1 (b) x2 (c) x3 
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Accordingly, the implementation of the proposed 
PFIWO scheme has led to improved state approximation 
performance. For the purpose of comparison, the results 
obtained with different number of particles for the 
system given by Eqs. (23) and (24) are also provided in 
Table II which includes run-time and mean square error 
(MSE). As it can be deduced from the table, the PFIWO 
algorithm is slightly slower than the PF algorithm; 
nonetheless, it contributes to considerable higher 
estimation accuracy. Also, it is worth noting that 
increasing the number of particles not necessarily leads 
to greater estimation performance. Furthermore, one has 
to consider the computational burden imposed by 
increasing the number of particles. 
 

TABLE II 
OVERVIEW OF THE SIMULATION RESULTS OBTAINED  

USING PF AND PFIWO 

Algorithm N  Run-time 
(seconds) 

MSE 
x1 x2 x3 

 
PF 

15 0.3782 0.1797 0.2162 0.1351 
25 0.5213 0.1554 0.2039 0.0926 
50 0.7936 0.1819 0.2275 0.1078 

 
PFIWO 

15 0.5641 0.0340 0.0876 0.0267 
25 0.8229 0.0213 0.0313 0.0311 
50 1.1795 0.0224 0.0352 0.0329 

V.2. Angular Velocity Estimation of an Induction 
Machine 

To further evaluate the usefulness of the proposed 
PFIWO algorithm, both the PF and PFIWO are applied 
to estimate the angular velocity of an induction machine 
which exhibits nonlinear dynamics [13]-[15]. The state- 
space model describing the dynamics of a three-phase 
induction machine can be expressed as [15]: 

 
 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 3 2x t k x t u t x t k x t u t= + + +  (25a) 
 
 ( ) ( ) ( ) ( ) ( )2 1 1 1 2 2 4x t u t x t k x t k x t= − + +  (25b) 
 
     ( ) ( ) ( ) ( ) ( )( ) ( )3 3 1 4 3 1 5 4x t k x t k x t u t x t x t= + + −  (25c) 
 
     ( ) ( ) ( ) ( ) ( )( ) ( )4 3 2 4 4 5 1 3x t k x t k x t x t u t x t= + + −  (25d) 
 
      ( ) ( ) ( ) ( ) ( ) ( )( )5 6 3 5 1 4 2 3x t k u t k x t x t x t x t= + −  (25e) 
 
wherein ik , 6,,2,1 …=h are parameters associated with 
the machine drive. ( )1x t , ( )2x t , ( )3x t , ( )4x t are the 
respective components of the stator and rotor flux in the 
plane perpendicular to the rotation axis. ( )5x t denotes 
the angular velocity. The inputs to the system are 
described next. ( )1u t is the frequency of the stator 

voltage, ( )2u t  is the amplitude of the stator voltage, and 

( )3u t  signifies the load torque. The outputs of the 
system are the stator currents given by: 
 
 ( ) ( ) ( )1 7 1 8 3z t k x t k x t= +  (26a) 
 
 ( ) ( ) ( )2 7 2 8 4z t k x t k x t= +  (26b) 
 
in which 7k and 8k are constant parameters. The system 
is simulated using 500 steps of the Euler-Maruyama 
method with st 1.0=∆ . The system initial conditions are 

set as Tx ]3.01.04.06.02.0[)0( −−= , and the values 
for different parameters are chosen as 

186.01 −=k , 178.02 =k , 225.03 =k , 234.04 −=k , 
081.05 −=k , 018.06 −=k , 643.47 =k , and 
448.48 −=k . Also, the system inputs are given as 

1)(1 =tu , )(2 tu , and )(3 tu . The PF algorithm was 
applied with ( 100=N  and 85=thN ). The parameters 
regarding the suggested PFIWO algorithm are provided 
in Table III, as well. 

TABLE III 
PARAMETERS USED IN THE PFIWO METHOD 

maxiter  0σ  fσ  maxN  minN  Max. 
Weed 
Number 

15 0.1 0.00001 3 1 100 
 

It should be noted minN should always be selected 
greater than 0 to ensure the participation of all particles 
in the reproduction stage of the IWO algorithm. It 
follows from the results and discussions presented in this 
section that the user should make a compromise between 
estimation accuracy and run-time which extremely 
depends on the application. 

The angular velocity approximation results are given 
in Figs. 4. It can be perceived from the figure that with 
an equal number of particles the PFIWO methodology 
brings about superior estimation performance even in the 
presence of severe nonlinear model structures. 

VI. Conclusion 
An enhanced PF algorithm established upon the IWO 

scheme is proposed. Firstly, the sampling step is 
transformed to an optimization problem by defining an 
apt fitness function. Then, the IWO algorithm is 
exploited to deal with the optimization problem 
efficiently. The simulation results based on the proposed 
methodology are supplemented which verifies the 
algorithm’s accuracy. It is demonstrated through 
simulations that the PFIWO is slightly slower and 
imposes somewhat more computational burden than the 
generic PF, yet it would contribute to noticeably greater 
estimation precision. The proposed algorithm can be 
used for state estimation of highly nonlinear plants, and 
can significantly deal with the shortcomings of the 
conventional PF. 
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(a) 

 
(b) 

 
Figs. 4. Stimation of angular velocity using the PF and PFIWO 

Algorithms (a) estimation results (b) estimation errors 
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