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This paper considers the implementation of Bezier–Bernstein polynomials and the Leven-
berg–Marquart algorithm for identifying multiple-input single-output (MISO) Hammer-
stein models consisting of nonlinear static functions followed by a linear dynamical
subsystem. The nonlinear static functions are approximated by the means of Bezier curves
and Bernstein basis functions. The identification method is based on a hybrid scheme
including the inverse de Casteljau algorithm, the least squares method, and the Leven-
berg–Marquart (LM) algorithm. Furthermore, results based on the proposed scheme are
given which demonstrate substantial identification performance.
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1. Introduction

The Hammerstein model is composed of a nonlinear static memoryless subsystem which is in series with a linear dy-
namic block. Thus far, the Hammerstein model has received major attention in modeling a myriad of nonlinear systems
including chemical processes, DC/DC convertors, electrically stimulated muscles, actuators, RF transmitters, stretch reflexes
and etc. [1–9]. As a consequence of this wide variety of applications, different identification algorithms for Hammerstein
models are vastly addressed in literature. These identification methods differ mostly in the way the nonlinear static func-
tions are represented. The identification schemes can be roughly divided into two categories: the non-parametric and the
parametric. The non-parametric methods usually involve probabilistic calculations for recovering the system’s unknown
nonlinear properties [10,11]. In the parametric approaches, on the other hand, the nonlinear functions are defined by poly-
nomials, neural networks, or expansions of basis functions with a finite number of parameters to be determined [2,12,13].
Nonlinear optimization algorithms can be readily applied to approximate the parameters representing these Hammerstein
models. Ding et al. investigated several invaluable parametric approaches on the identification problems associated with
Hammerstein models which are addressed in [12–16]. In [12], Ding and Chen proposed a mathematical foundation based
on iterative and recursive least squares for estimating the parameters related to Hammerstein structures described by AR-
MAX/CARMA models. Ref. [13] suggests the use of the gradient search and the Newton–Raphson method to the identification
problem of Hammerstein models. Auxiliary model-based approaches to identification of Hammerstein output-error systems
are also delineated in [14–16].

Despite the wealth of papers, existing formulations do not sufficiently capture the system nonlinearities. This defect
mostly results from considering the nonlinear functions with a pre-defined structure such as polynomials with a known or-
der, multi-segment piecewise linear forms, and etc. Obviously, many practical plants do not fit into these categories. Hong
. All rights reserved.
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and Mitchell [17] proposed a parametric identification algorithm for single-input single-output (SISO) Hammerstein systems
based on Bezier–Bernstein approximation. Albeit their approach was successful in identifying numerical examples, it suf-
fered from several drawbacks which made it almost impossible to be used for identifying real world nonlinear processes.
Firstly, the algorithm only considered the delayed versioned of the inputs to the nonlinear subsystem, whereas in most prac-
tical cases the inputs to the nonlinear blocks are not delayed. A more subtle disadvantage is that the Gauss–Newton algo-
rithm used to estimate the nonlinear coefficients is, up to a point, slow, and inaccurate.

In the proposed scheme in this paper, the Hammerstein model is considered in a rather comprehensive mode, that is, both
the delayed and un-delayed versions of the inputs appear in the system model and the SISO Hammerstein model is expanded
to a multiple-input single-output (MISO) structure. Additionally, the Levenberg–Marquart (LM) algorithm is used for esti-
mating a mixture of the nonlinear and linear parameters. The LM algorithm has been previously implemented in many non-
linear least squares problems ranging from applications in nuclear to biomedical engineering [6,18,19].

The main objective of this paper is to introduce a new scheme for identification of MISO Hammerstein models. The chief vir-
tue of the proposed scheme is that given an input/output data set from a plant, the model can be readily identified. The strength
of the proposed scheme is that the form of the nonlinear functions is considered to be unknown; thus, the identification algo-
rithm can furnish a better understanding of the nonlinear blocks. The nonlinear gain functions in Hammerstein model are
parameterized by Bezier curves, which is a linear combination of a set of Bernstein basis functions. These basis functions are
fabricated over the input data by exploiting the inverse de Casteljau algorithm [20]. The remaining parameters in the model
are approximated using the least squares algorithm and the Levenberg–Marquart (LM) algorithm subject to constraints.

The balance of this paper proceeds as follows. The MISO Hammerstein model is described in Section 2. Section 3 points
out the proposed identification algorithm. The results established upon the proposed scheme are given in Section 4. The pa-
per ends with conclusions in Section 5.

2. The MISO Hammerstein model

A MISO Hammerstein model is composed of a cascade of two subsystems including nonlinear gain functions W(*) as the
nonlinear subsystem, and a dynamic linear part as the linear subsystem. Generally, the system can be modeled by
yðtÞ ¼ �
Xna

i¼1

aiyðt � iÞ þ
Xnb1

k¼0

bk;1w1ðu1ðt � kÞÞ þ . . .þ
Xnbm

k¼0

bk;mwmðumðt � kÞÞ þ gðtÞ ð1Þ
where y(t) is the system output, and u1, ..., um denote the inputs. g(t) is a Gaussian random noise with zero mean and var-
iance of r2. wi(t) i = 1, ..., m are the outputs of the nonlinear subsystem (or the nonlinear gain functions) and the input to the
linear block. na and nbi

; i ¼ 1; . . . ;m are the input and output lags for the linear subsystem. The gain of the linear subsystem is
given by
G ¼
Pm

i¼1

Pnbi
k¼1bk;i

1þ
Pna

j¼1aj
ð2Þ
A simple block diagram of the MISO Hammerstein model is depicted in Fig. 1.

3. The Identification algorithm

3.1. Modeling of nonlinear gain functions W(*) using Bezier–Bernstein polynomial functions

The Bezier curve is a parametric curve characterized by Bernstein basis functions. With a set of pre-set two dimensional
control points, the Bezier curve can be readily constructed through the de Casteljau algorithm. Previously, the inverse de
Casteljau algorithm has been proposed to map the input data to (0, 1), the inverse procedure of the functional mapping
in the de Casteljau algorithm, through iterative error feedback [20].

The univariate Bernstein polynomial basis function Bd
j ðxÞ are the expansion of [x + (1 � x)]d [21–27], defined by
Bd
j ðxÞ ¼

d

j

� �
xjð1� xÞd�j ð3Þ
where j and d are nonnegative integers j 6 d over the region x e [0, 1]. The total number of the univariate dth order Bernstein
polynomials is d + 1. It has been shown that Bernstein polynomials can be computed following this recursion [23,24]
Bd
j ðxÞ ¼ ð1� xÞBd�1

j ðxÞ þ xBd�1
j�1 ðxÞ ð4Þ
W(*) can be modeled as
wðuðtÞÞ ¼
Xd

j¼0

Bd
j ðxðuðtÞÞÞdj ð5Þ
where dj ‘s are the weights to be determined.



Fig. 1. The multi-input-single-output Hammerstein model.
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In order to model the system, firstly the inverse de Casteljau algorithm is applied to map each input data to x e [0, 1], so
that xðuðtÞÞNt¼1 can be used to fabricate the Bernstein polynomial basis functions Bd

j ðxðuðtÞÞ
N
t¼1. The algorithm is described as

follows [14]:
Given a desired mapping point u(t) a set of knots Uj e [U0, Ud] e [min (u), max (u)], j = 0, ..., d are preset. Denote the iter-

ation step in the following procedure as n.

[1] Initially set n = 1, and x e [0, 1] as a random number.
[2] Calculate the corresponding first component of Bezier curve points, UðrÞj , using the de Casteljau’s recursive formula:
UðrÞj ðxÞ ¼ ð1� xÞUðr�1Þ
j ðxÞ þ xUðr�1Þ

jþ1 ð6Þ
until r = d
UðxðnÞÞ ¼ ð1� xðnÞÞUðd�1Þ
0 ðxðnÞÞ þ xðnÞUðd�1Þ

1 ðxðnÞÞ ð7Þ
[3] The difference between the desired point u and the estimated point û (x(n))is used to adjust the search direction of x. A
new point is created as

~uðxðnÞÞ ¼ ûðxðnÞÞ þ c½u� ûðxðnÞÞ� ð8Þ
where c, the learning rate, is a very small positive integer (0 < c << 1).
[4] The desired solution of x at iteration step (n + 1) is computed such that ~uðxðnÞÞ is the first order Bezier point with

respect to the two end knots Uðd�1Þ
0 ðxÞ and Uðd�1Þ

1 ðxÞ. The solution is thus given by
xðnþ1Þ ¼
~uðxðnÞÞ � Uðd�1Þ

0 ðxðnÞÞ
Uðd�1Þ

1 ðxðnÞÞ � Uðd�1Þ
0 ðxðnÞÞ

ð9Þ
The procedure continues until ||u� ~uðxðnÞÞ|| 6 e, where e is an arbitrary small positive number close to zero. If
||u� ~uðxðnÞÞ|| 6 e set x = x(n). Otherwise, set n = n + 1 and go to step 2.

Having mapped the input data to (0, 1), we can now calculate the Bernstein basis functions Bd
j ðxðuðtÞÞÞ

N
t¼1 according to the

initially chosen knots Uj, j = 0, ..., d. Consequently, the unknown nonlinear function can be explained by
wdðtÞ ¼
Xd

j¼0

Bd
j ðxðuðtÞÞÞdj ð10Þ
This algorithm continues, until the mapping is done for all inputs to the Hammerstein model. Consequently, the Bernstein
basis functions can be formed for all nonlinear gain functions. However, dj, j = 0, ..., d still has to be estimated. The approx-
imated output y(t) can be expressed by substituting Eq. (10) in (1).
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F̂h ¼ �
Xna

i¼1

aiyðt � iÞ þ
Xnb1

k¼0

bk;1

Xd1

j¼0

dj;1Bd1
j ðxðu1ðt � kÞÞÞ þ . . .þ

Xnbm

k¼0

bk;m

Xdm

j¼0

dj;mBdm
j ðxðumðt � kÞÞÞ ð11Þ
Denote F̂h where F̂hð�yðt � 1Þ; . . . ; �yðt � naÞ; uiðtÞ; . . . ; uiðt � nbi
Þ; â; b̂; d̂Þ is the estimated Hammerstein model output,

â ¼ ½a1; . . . ; ana �
T
; b̂ki
¼ ½b0;i; . . . ; bnbi

;i�T , and d̂i ¼ ½d0;i; . . . ; ddi ;i�
T
; i ¼ 1; . . . ;m.

A possible way to increase the approximation accuracy is to minimize the sum of squared error
SSE ¼
XN

t¼1

½yðtÞ � F̂h�2 ð12Þ
It is obvious that F̂h is not linear to b̂ and d̂ yet it can be translated as a linear regression from y(t) in vector â. The proposed
parameter estimation procedure is performed in two stages: (a) based on the estimated resultant model structure using the
Bezier–Bernstein polynomial functions, the least squares algorithm is applied to estimate the parameters in the autoregres-
sive (AR) part of the linear subsystem; (b) the remaining parameters are approximated using a Levenberg–Marquart algo-
rithm subject to the constraint of the unit gain [20].

3.2. Determining the parameters âj using the least squares method

Eq. (1) can be rewritten as matrixes in regression form
y ¼WHþH ð13Þ
with
W ¼

wðFð1ÞÞ
wðFð2ÞÞ
. . .

wðFðNÞÞ

2
66664

3
77775 ð14Þ

wðFðtÞÞ ¼ ½�yðt � 1Þ; . . . ;�yðt � naÞ;Bdi
0 ðxðuiðtÞÞÞ; . . . ;Bdi

di
ðxðuiðtÞÞÞ; . . . ;Bdi

0i
ðxðuiðt � nbi

ÞÞÞ; . . . ;Bdi
di
ðxðuiðt � nbi

ÞÞÞ�

2 Rnaþðd1þ1Þðnb1
þ1Þþ...þðdmþ1Þðnbmþ1Þ
and
H ¼ ½âT ; ðb0d0Þ; . . . ; ðb0ddÞ; . . . ; ðbnb
d0Þ; . . . ; ðbnb

ddÞ�T 2 Rnaþðd1þ1Þðnb1
þ1Þþ...þðdmþ1Þðnbmþ1Þ
H ¼ ½gð1Þ; . . . ;gðNÞ�T is the presumed Gaussian noise associated with the system. The least squares solution of H is calculated
as
Ĥ ¼ ½WT W��1WT y ð15Þ
from (15) we can simply derive â, which is a sub vector of Ĥ. At this place, a sequence r(t) as a collateral model output, based
on the least squares solutions of â, and the output data is generated,
rðtÞ ¼ yðtÞ þ â1yðt � 1Þ þ . . .þ ânyðt � naÞ ð16Þ
However, the intermediate model output r(t), still needs to be interpreted by the unknown parameters b and d. The approx-
imated version of r(t) based on Bezier–Bernstein basis functions is
r̂ðtÞ ¼
Xnb1

k¼0

bk;1

Xd1

j¼0

dj;1Bd1
j ðxðu1ðt � kÞÞÞ þ . . .þ

Xnbm

k¼0

bk;m

Xdm

j¼0

dj;mBdm
j ðxðumðt � kÞÞÞ ð17Þ
Proposition 1. It is postulated that W is non-singular. As a consequence, the minimization of
PN

t¼1½yðtÞ � F̂h�2 is identical to
that of

PN
t¼1½rðtÞ � r̂ðtÞ�2 [17].
3.3. Applying the Levenberg–Marquart algorithm to approximate b and d

LM algorithm is a modified version of the Gauss–Newton algorithm which converges to an optimal solution through an
iterative procedure. The problem with the Gauss–Newton algorithm arose as in many practical cases in which the Jacobian
matrix becomes singular, thus a valid inverse matrix could not be obtained. Since the objective functions are in the quadratic
form, it is convenient to use this algorithm to find the solution. The LM algorithm introduces a new multi-functional param-
eter l called the damping parameter. The LM step is defined as follows [28–30]:
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hlm ¼ fJT J þ lIg�1JT F ð18Þ
where J is the Jacobian matrix, I is a unit matrix with the same size as JTJ, and F is the function to be minimized.
Adding the damping parameter leads to some positive effects [31]:

a. For all positive values of the damping parameter the coefficient matrix is positive definite, and consequently hlm (the
LM step) is decent direction.

b. For large values of l we have
hlm ¼ �
1
l

JT F ¼ � 1
l

F 0 ð19Þ
which is a small step in the steep decent direction. A desirable feature, if the current intermediate solution is far from the
answer.

c. For small values of LM step, hlm = hgn where hgn denotes the Gauss–Newton step. This happens in the final steps when
the algorithm is converging.

One can understand from the above consequences that the damping parameter is able to influence both the direction and
the size of a step. Thus, an algorithm without a specific line search can be achieved.
Fig. 2. Fifteen Bezier–Bernstein polynomial basis functions fabricated over the first input data u1.

Fig. 3. Fourteen Bezier–Bernstein polynomial functions constructed from the second input data u2.
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Another important concept in the LM algorithm is the gain ratio k. Gain ratio is also commonly used in trust region algo-
rithms such as Powell’s dog leg method [30,31]. The gain ratio is signified as the ratio between the actual and predicted de-
crease in function value, and it can be computed using the following equation:
Fig. 4.
conditi
k ¼ FðxÞ � Fðxþ hÞ
Lð0Þ � LðhÞ ð20Þ
where the denominator is the gain predicted by the linear model. In the LM algorithm, the damping parameter is increased
as the gain ratio becomes small, since L(h) is a poor estimation of F(x + h). On the other hand, a large value of the gain ratio
indicates a good approximation; therefore, the damping parameter is decreased. The gain predicted by the linear model is
calculated as [30]:
Lð0Þ � LðhlmÞ ¼ �hT
lmJT FðxÞ � 0:5hT

lmJT Jhlm ¼ �0:5hT
lmð2JT FðxÞ � ðJT J þ lI � lIÞhlmÞ ¼ 0:5hT

lmðlhlm � JT FðxÞÞ ð21Þ
One should note that both �hT
lmJFðxÞ and hT

lmhlm are positive; thus, L(0) � L(hlm) is also positive and nonzero. A comprehensive
discussion of the LM algorithm can be found in Ref. [30]. Note that the constraint of the unit gain resulting from the special
structure of the Hammerstein model should be considered so an enhanced algorithm could be achieved. In other words, the
algorithm would avoid being trapped in local minima [14,31]. Using Eqs. (16), (17) and proposition 1, the model residual is
represented as eðb̂; d̂; tÞ ¼ rðtÞ � r̂ðtÞ.

The Jacobian matrix J with respect to [bT, dT]T is given by
The estimated (blue line) and the actual (red line) nonlinear gain functions associated with the first (a), and the second (b) input in low noise
on. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Ji ¼

@
@b0i

eðb̂; d̂;1Þ � � � @
@bnbi

eðb̂; d̂;1Þ @
@d0i

eðb̂; d̂;1Þ � � � @
@ddi

eðb̂; d̂;1Þ

@
@b0i

eðb̂; d̂;2Þ � � � @
@bnbi

eðb̂; d̂;2Þ @
@d0i

eðb̂; d̂;2Þ � � � @
@ddi

eðb̂; d̂;2Þ
� � � � � � � � � � � � � � � � � �

@
@b0i

eðb̂; d̂;NÞ � � � @
@bnbi

eðb̂; d̂;NÞ @
@d0i

eðb̂; d̂;NÞ � � � @
@ddi

eðb̂; d̂;NÞ

2
6666664

3
7777775

J ¼ ½J1J2 . . . Jm� ð22Þ
where
@

@bi
eðb̂; d̂; tÞ ¼

Xd

j¼0

Bd
j ðxðuðt � iÞÞÞd̂j; j ¼ 0;1; . . . ;nb ð23Þ

@

@dj
eðb̂; d̂; tÞ ¼

Xnb

i¼0

Bd
j ðxðuðt � iÞÞÞb̂i; j ¼ 0; . . . ;d
The algorithm is as follows:
(I) Set n = 0, v = a, l = b, b̂, and d̂ are generated as random vectors with appropriate dimensions.

(II) Apply the Levenberg–Marquart algorithm subject to the normalization constraint in order to maintain the gain of lin-
ear subsystem as one.
Fig. 5. Corresponding estimation errors regarding the first (a), and the second (b) nonlinear functions.
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(a) LM step
Fig. 6.
conditi
AðnÞ ¼ ðJðnÞÞT JðnÞ; hlm ¼ fAðnÞ þ lðnÞIg�1ðJðnÞÞT e

b̂ðnþ1Þ

d̂ðnþ1Þ

" #
¼ b̂ðnÞ

d̂ðnÞ

" #
þ hlm ð24Þ
where
e ¼ ½eðb̂; d̂;1Þ; . . . ; eðb̂; d̂;NÞ�T
(b) Apply the constraint of the unit gain (parameter normalization). Calculate G the estimated gain of the linear subsystem
Ĝðnþ1Þ ¼
Pm

i¼1

Pnbi
k¼1b̂ðnþ1Þ

k;i

1þ
Pna

j¼1aj
ð25Þ
then
The estimated (blue line) and the actual (red line) nonlinear gain functions associated with the first (a), and the second (b) inputs in high noise
on. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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b̂ðnþ1Þ  b̂ðnþ1Þ=Ĝðnþ1Þ

d̂ðnþ1Þ  Ĝðnþ1Þd̂ðnþ1Þ
ð26Þ
Subsequently, calculate
k ¼ jjeðnÞjj2 � jjeðnþ1Þjj2

0:5hT
lmðlðnÞhlm � JT eðnÞÞ

ð27Þ
(b) If k > 0 meaning the solution matrix has a better estimation, step is accepted.
Fig. 7. Corresponding estimation errors for the first (a), and the second (b) nonlinear functions with noisy measurements.

roximated values of the parameters related to the Hammerstein system adopted in example 1.

mization method Noise level a1 a2 b0,1 b1,1 b0,2 b1,2 b2,2

s–Newton r = 0.01 �1.1853 0.8837 0.2888 �0.4888 0.4211 �0.5112 1.0210
r = 0.1 �1.1308 0.8568 0.2157 �0.4658 0.3602 �0.5523 0.9547

nberg–Marquart r = 0.01 �1.1997 0.9011 0.2994 �0.4898 0.3908 �0.4899 1.0000
r = 0.1 �1.1858 0.8903 0.2782 �0.44713 0.3875 �0.5203 1.1021

values �1.2 0.9 0.3 �0.5 0.4 �0.5 1
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Then,
Fig. 8.
functio
the we
X ¼ b̂ðnþ1Þ

d̂ðnþ1Þ

 !
;Aðnþ1Þ ¼ ðJðnþ1ÞÞT Jðnþ1Þ;
where X denotes the solution matrix.
Afterwards, update the damping parameter
lðnþ1Þ ¼ lðnÞ�maxð1=3;1� ð2k� 1Þ3Þ; t ¼ a
and e(n+1) = e(n). The loop stops as jj
PN

t¼1e2ðtÞjj < n where 0 < n << 1.
If k is not positive l is updated (step is not accepted) l = l � t and t = a � t.
Go to step II.

4. Illustrative examples and discussion

4.1. Example 1

A simulated MISO Hammerstein model is generated with the following equation
yðtÞ ¼ 1:2yðt � 1Þ � 0:9yðt � 2Þ þ 0:3w1ðu1ðtÞÞ � 0:5w1ðu1ðt � 1ÞÞ þ 0:4w2ðu2ðtÞÞ � 0:5w2ðu2ðt � 1ÞÞ
þ w2ðu2ðt � 2ÞÞ þ gðtÞ ð28Þ
Where
W1ðuÞ ¼ u2ðu2 þ 1ÞsignðuÞ ð29Þ
W2ðuÞ ¼ juj

ffiffiffiffiffiffi
juj

p
signðu� 1Þ ð30Þ
and g(t) e N(0, r2) in which r2 = 0.0001. Based on the Eqs. (28)–(30), input/output data samples were generated. The inputs
u1 and u2 are uniformly distributed in the ranges [�1.5, 1.5] and [�2.5, 2.5], respectively. A set of 15 knots for the first input
u1 were selected as
u1 ¼ ½�1:5;�1:2;�1;�0:5;�0:2;�0:1;�0:02;0; 0:02;0:1;0:2;0:5;1;1:2;1:5�
Consequently, the polynomial degree of the Bernstein basis functions was set as d = 14.Afterward, the input data is fed into
the inverse de Casteljau algorithm with learning rate c = 0.01 in order to perform the functional mapping into x e (0, 1), a
data range suitable for the Bernstein basis functions to be formed using Eqs. (3), (4). Therefore, a sequence of regressors
Bd

j ðxðuðtÞÞÞ; j ¼ 0; 1; . . . ; 14 were generated. The resultant 15 Bezier–Bernstein polynomial functions are shown in Fig. 2.
Similarly, 17 knots were preset for the second input u2 as follows:
u2 ¼ ½�2:5;�1:5;�0:5;0;0:5;0:8;0:97; 0:98; 0:999;1;1:001;1:002;1:01;1:1;1:2;1:5;2:5�
Deterioration of estimation accuracy as observed from a comparison between the estimated (blue line) and the actual (red line) nonlinear gain
n regarding the second input as a result of reducing knots. (For interpretation of the references to colour in this figure legend, the reader is referred to
b version of this article.)
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The constructed basis functions are illustrated in Fig. 3. It is important to note that these functions are quite dense where
most of the nonlinearity exists (here, the most nonlinear span is in the neighborhood around u2 = 1). Implementing the least
squares algorithm discussed in Section 3.2, the linear coefficients aj, j = 1, 2, ..., na are computed. The model auxiliary output
r(t) is formed on the basis of the estimated values of a. Henceforth, the task of the identification algorithm is to minimizePN

t¼1e2ðtÞ through the LM algorithm, that is, v� ¼ arg min
PN

t¼1e2ðtÞ;8v̂
n oh i

, subject to G = 1 where v = [aT, bT, dT]T.

It is important to note that a should be chosen quite carefully. In conventional nonlinear least squares problems solved
using the LM method, the value of a is chosen as 2 [30]. However, this choice of a, fails to appropriately approximate the
nonlinear parameters in the proposed identification algorithm in this paper due to the number of parameters to be tuned
and the abundance of local minimums. A large value of a results in a fast convergence, the algorithm would get trapped
in local minima though. For very small values of a, the LM algorithm loses its convergence speed, and, up to a point, its accu-
racy. The most suitable value of a was obtained empirically as 1.01. This would guarantee less iteration cycles, and thus a
relatively fast convergence. Furthermore, this would lead to a more precise estimation of the parameters.

With the above considerations in mind, The LM algorithm as discussed in Section 3.3 is applied. After 88 iteration cycles
the value of the sum of squared errors was achieved as 0.0028. The estimated nonlinear gain functions and the corresponding
estimation errors are depicted in Figs. 4 and 5. Moreover, the same simulation was performed based on a rather noisy data
basis, i.e. r2 = 0.01. The results are displayed in Figs. 6 and 7 which demonstrates the algorithm’s capability to estimate the
nonlinear functions with a high precision, in spite of the lack of accurate output measurements.

For the purpose of comparison, the estimated parameters associated with the Hammerstein system under both noise lev-
els by incorporating both the Gauss–Newton and the Levenberg–Marquart method are outlined in Table 1.
Fig. 9. Bezier–Bernstein basis functions formed based on the data from the first (a) and the second (b) input regarding example 2.



Fig. 10. The estimated and the actual nonlinear gain functions associated with the first (a), and the second (b) inputs regarding example 2.
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One has to consider the effect of the initiating knots on the overall algorithm’s convergence. Fewer knots would lead to a
poor estimation of the nonlinear functions. In order to illustrate this property, a set of 10 knots as given bellow are replaced
with the previous 17 knots used to approximate W2
u2 ¼ ½�2:5;�1:5;0; 0:5; 0:8; 0:97;1;1:01;1:1;2:5�
The approximated W2 function is shown in Fig. 8. On the contrary, more knots would contribute to a more proper estimation,
while deteriorating the computational simplicity of the overall algorithm, and elongating the convergence time. Thus, a
trade-off should be made between the convergence speed and the estimation preciseness. Furthermore as mentioned earlier
in this section, it is worth noting that the initiating knots should be selected closer to each other in the most nonlinear
regions.

4.2. Example 2

Suppose
yðtÞ ¼ 1:608yðt � 1Þ � 0:6385yðt � 2Þ þ 0:3w1ðu1ðtÞÞ þ 0:207w2ðu2ðt � 1ÞÞ � 0:1764w2ðu2ðt � 2ÞÞ þ gðtÞ ð31Þ

W1ðuÞ ¼ satðu;�0:6; 0:6Þ ð32Þ

W2ðuÞ ¼ �31:549uþ 41:732u2 � 24:201u3 þ 68:634u4 ð33Þ
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where the function sat(x, x�, x+) is the saturation function with respective left and right breaking points in x� and x+. W2(u) is
the static nonlinear function regarding to a steam-water heat exchanger system described by Eq. (31) as studied in [32]. Note
that the term consisting w1 is added to the system model in order to obtain a MISO structure. The Gaussian noise
g(t) e N(0, 0.1) is added to the Hammerstein model to account for output measurement errors, as well. The inputs u1 and
u2 are limited to the ranges [�1, 1] and [�2.5, 2.5], respectively. Five hundred samples of input/output data were generated
using Eqs. (31)–(33). In order to approximate system nonlinearities, a set of 16 and 10 control points (knots) were preset as
given below
u1 ¼ ½�1;�0:9;�0:8;�0:69;�0:65;�0:6;�0:55;�0:5;0;0:5;0:55;0:6;0:65;0:69;0:8;0:9;1�
u2 ¼ ½�2:5;�1:5;�1:2;�0:8;�0:5; 0;0:5;0:8;1:2;1:5;2:5�
The proposed identification algorithm based on Bezier–Bernstein approximation as discussed earlier was applied. The
Bezier–Bernstein basis functions formed by exploiting the data from the first and the second input are illustrated in
Fig. 9. The approximated static nonlinearities are depicted in Fig. 10 and the corresponding estimation errors are shown
in Fig. 11. Additionally, the approximated parameters are presented in Table 2.

Having reviewed the simulation results provided in this section, one can realize that the implementation of Bezier–
Bernstein approximation and the LM algorithm brings about higher modeling and identification capabilities.
Fig. 11. Corresponding estimation errors regarding the first (a), and the second (b) nonlinear functions in example 2.



Table 2
The approximated values of the parameters related to the Hammerstein system adopted in Example 2.

Optimization method Noise level a1 a2 b0,1 b0,2 b1,2 b2,2

Gauss–Newton r = 0.1 �1.2095 0.8031 0.2459 1.21e�4 0.4817 �0.8005
Levenberg–Marquart r = 0.1 �1.5867 0.6214 0.2789 0.0000 0.2153 �0.1609
True values �1.608 0.6385 0.3 0 0.207 �0.1764
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5. Conclusions

A new straight forward identification algorithm for the MISO Hammerstein model is outlined in this paper. Bezier–
Bernstein basis functions were implemented to approximate the system nonlinearities. The parameters in the Hammerstein
model are estimated using the least squares and the LM algorithm subject to constraints. Lastly, the results based on the
proposed scheme are given which demonstrate superior estimation performance.
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