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This paper introduces a novel hybrid optimization algorithm by taking advantage of the
stochastic properties of chaotic search and the invasive weed optimization (IWO) method.
In order to deal with the weaknesses associated with the conventional method, the pro-
posed chaotic invasive weed optimization (CIWO) algorithm is presented which incorpo-
rates the capabilities of chaotic search methods. The functionality of the proposed
optimization algorithm is investigated through several benchmark multi-dimensional
functions. Furthermore, an identification technique for chaotic systems based on the CIWO
algorithm is outlined and validated by several examples. The results established upon the
proposed scheme are also supplemented which demonstrate superior performance with
respect to other conventional methods.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear optimization problems arise almost in all of
engineering problems. Practically, many engineering prob-
lems lack continuity of variables which is a chief necessity
for exploiting derivative based optimization methods.
Therefore, there has been an increasing interest in applying
meta-heuristic algorithms to solve nonlinear optimization
algorithms in recent years. The common feature of the
nature-inspired meta-heuristic algorithms is that they
compromise the principles and the stochastic properties
of the natural phenomena. A considerable fraction of liter-
ature has been devoted to investigate the bio-mimicry
methods aimed at solving optimization problems and
designing autonomous intelligent systems [1–4]. These
methodologies can be roughly divided into two major
categories: the evolutionary algorithms (EAs) such as GA
and the swarm intelligence (SI) algorithms like PSO, and
ACO.
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Following this trend, the bio-inspired IWO algorithm
was introduced by Mehrabian and Lucas [5] which imitates
the colonial behavior of invasive weeds in nature. The IWO
algorithm has shown to be virtuous in converging to opti-
mal solution by employing some basic characteristics of
weed colonization, e.g. seeding, growth and competition.
Previously, the IWO algorithm has been utilized in a myr-
iad of applications including optimizing and tuning of a ro-
bust controller [5], antenna configuration optimization [6],
optimal arrangement of piezoelectric actuators on smart
structures [7], DNA computing [8], and etc.

Chaos, a universal complex dynamical phenomenon,
lurks in nonlinear systems, and is characterized by its ergo-
dicity, certainty, and regularity. Despite the appearance of
chaotic sequences which follow an apparently unpredict-
able non-periodic stochastic pattern, they can be generated
by determinate equations. The first serious discussions and
analyses of chaos emerged in 1963 by Lorenz [9]. Hence-
forth, chaos and generally chaotic properties has been
widely studied and applied by scholars in different fields
of science, such as MEMs, pattern recognition, optimiza-
tion theory, nonlinear circuits, and so forth [10–13]. The
chaotic optimization algorithm (COA) delineated in Ref.
[14] adopts chaotic sequences to distribute possible
solutions. The use of chaotic sequences in lieu of random
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variables is at the core of chaotic optimization. According
to the numerical results given in Ref. [14], the chaotic
search can escape from local optima more easily compared
with other stochastic search optimization algorithms, and
exposes superior hill-climbing ability.

However, COA has a number of problems in practice.
Chaotic sequences are extremely sensitive on initial condi-
tions and slow in locating the optimal area as the search
space extends. Thus, appropriate initial values should be
tuned carefully beforehand, and the solution space should
be confined.

Debate continues about alternative optimization strate-
gies to overcome the detriments of COA. One avenue that
researchers have followed in their attempt to find more
robust algorithms is through integrating meta-heuristic
algorithms with COA [15–22]. In [23], authors suggested a
hybrid optimization algorithm incorporating chaos and
tabu search. Zilong et al. [13] combined some characteristics
of simulated annealing with those of chaotic optimization.
Xiang et al. [18] created an improved PSO algorithm using
the piece-wise linear chaotic map bringing forward the cha-
otic PSO (CPSO) algorithm. Yong et al. [24] combined the GA
with COA in order to be exploited in neural networks.

The objective of this paper is to propose a novel optimiza-
tion method by incorporating the COA and the IWO algo-
rithm. Different chaotic maps are applied to the algorithm,
and the most computational efficient one is selected accord-
ingly. Afterwards, the algorithm is assessed to optimize
benchmark functions. It is shown that the proposed CIWO
method outperforms other methods like IWO and PSO which
rely only on random distribution. Furthermore, the CIWO
algorithm is utilized for parametric identification of chaotic
systems. In order to furnish a better insight into the capabil-
ity of the CIWO algorithm, the results obtained from other
methods, e.g. IWO, PSO, CPSO, GA and COA, are also included.
The corresponding results verify the CIWO and the corre-
sponding identification scheme’s accurateness.

The balance of this paper proceeds as follows. The sec-
ond section of this paper briefly reviews the traditional
IWO method. Section 3 considers the proposed CIWO
algorithm. The numerical results established upon the
proposed scheme are given in Section 4. A parameter
estimation strategy using the CIWO algorithm is proposed
and tested in Section 5. The paper ends with conclusions in
Section 6.

2. Invasive weed optimization

2.1. Key terms

Prior to describing the IWO algorithm, the key terms are
explained as follows:

Seed: each unit in the colony which encompasses a
value for each variable in the optimization problem
before fitness evaluation.
Weed/plant: any seed that is evaluated grows to a weed
or plant.
Fitness: a value corresponding to the goodness of each
unit after being evaluated.
Field: the search/solution space.
Maximum weed population: a parameter preset repre-
senting the maximum number of possible weeds in
the field.

2.2. Description of traditional IWO method

The process flow of the IWO algorithm is outlined
below:

1. Randomly distribute the initial seeds Si = (x1,x2 , . . . ,xn),
where n is the number of selected variables, over the
search space. Consequently, each seed contains random
values for each variable in the n � D solution space.

2. The fitness of each individual seed is calculated accord-
ing to the optimization problem, and the seeds grow to
weeds able to produce new units.

3. Each individual is ranked based on its fitness with
respect to other weeds. Subsequently, each weed pro-
duces new seeds depending on its rank in the popula-
tion. The weeds which have acquired more resources
have a better chance of producing seeds, and those
which are less adapted to the field are unlikely to repro-
duce thereby creating less seeds. That is, the number of
seeds to be created by each weed alters linearly from
Nmin to Nmax which can be computed using the equation
given below
Number of seeds¼ Fi� Fworst

Fbest� Fworst
ðNmax�NminÞþNmin

ð1Þ

In which Fi is the fitness of ith weed. Fworst, and Fbest de-
note the best and the worst fitness in the weed popula-
tion. This step ensures that each weed take part in the
reproduction process.

4. The generated seeds are normally distributed over the
field with zero mean and a varying standard deviation
of riter described by
riter ¼
itermax � iter

itermax

� �n

ðr0 � rf Þ þ rf ð2Þ

where itermax and iter are the maximum number of
iteration cycles assigned by the user, and the current
iteration number respectively. r0 and rf represent the
pre-defined initial and final standard deviations. n is
called the nonlinear modulation index. This is a rela-
tively critical parameter which can influence the con-
vergence performance of the IWO algorithm. Through
a set of simulations, it has been discerned that the most
appropriate value for modulation index is 3 (see Fig. 1.
which portrays the decrease in normalized standard
deviation for different nonlinear modulation indices as
the number of iteration cycles augment). Having
selected this suitable value for nonlinear modulation
index, the algorithm starts with a relatively high distri-
bution variance to guarantee a complete scan of the
solution space. As the iteration number increases and



Fig. 1. Evolution of the standard deviation corresponding to different values of the modulation index.

Fig. 2. The Feigenbaum diagram for logistic map.
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the dispersion variance dwindle, the search would be
restricted to the neighborhoods around the reproducing
plant which has attained an apt level of fitness thereby
increasing the estimation accuracy.

5. The fitness of each seed is calculated along with their
parents and the whole population is ranked. Those
weeds with less fitness are eliminated through compe-
tition and only a number of weeds remain which are
equal to Maximum weed population.

6. The procedure is repeated at step 2 until the maximum
number of iterations allowed by the user is reached.

2.3. Advantages and disadvantages of implementing IWO

On the one hand, The IWO algorithm certifies that all
possible candidates would participate in the reproduction
process. In contrast, most meta-heuristic algorithms would
not allow the less-fitted individuals to produce offspring
such as the GA. Besides, the IWO algorithm is straightfor-
ward and it includes less deal of computational burden un-
like other methods. As a good illustration, one can consider
the PSO algorithm. PSO needs to update both the position
and velocity of individuals in each iteration round which
require some extra calculations to find the best position
in the neighborhood of each particle as well as the whole
population [6].

On the other hand, in case of problems with an outsized
search space, one has to apply a greater number of seeds to
each plant so that the search space can be completely in-
spected. This would augment the computation time dra-
matically, not to mention the fact that the problem
becomes even more severe as the number of variables to



Fig. 3. The bifurcation diagram for sinusoidal iterator.

Fig. 4. The pseudo code representing the CIWO algorithm.
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be tuned increases. This is because the search should be
performed in a bulkier multi-dimensional space. In addi-
tion, the gradual reduction of standard variance which
plays a key-role in the IWO method can bring about imma-
ture convergence, and sometimes it is rather difficult to
make an adequate trade-off between approximation pre-
ciseness and avoiding convergence to local optima.

For a more comprehensive comparison between IWO
and previously suggested meta-heuristic algorithms the
interested reader is referred to Refs. [5,6].

3. The Chaotic invasive weed optimization algorithm

In order to overcome the shortcomings of IWO, chaotic
search is integrated in the IWO algorithm. It is worth not-
ing that chaotic search methods have a greater ability to
escape from the local minima [14]; therefore, the CIWO
algorithm has a lesser chance of pre-mature convergence
compared to IWO. Besides, due to greater scanning and
search capabilities, the implementation of the chaotic se-
quences precludes the need for increasing the number of
seeds in the solution space, thereby relatively reducing
the computational cost of the overall algorithm.

In this section, firstly the chaotic maps utilized in the
CIWO algorithm are explained. Afterwards, the proposed
CIWO scheme is described. For more information regarding
chaotic dynamics refer to [25].

3.1. Chaotic maps

3.1.1. Logistic map
One of the simplest and well-known chaotic maps

which has been utilized in several studies [20,21,23–26],
is the logistic map introduced by Sir Robert May in 1976.
An implication of this is the possibility that a simple deter-
ministic dynamic system can expose complex chaotic
behavior devoid of any stochastic disruptions. The logistic
map is given by

xkþ1 ¼ axkð1� xkÞ ð3Þ

where a 2 [0,4] is the control parameter and x 2 [0,1]
stands for the chaotic variable. By manipulating the control



Fig. 5. The quadratic function with two variable and a global minimum at (x1,x2,y) = (1,1,0).

Table 1
Parameter attributes of the CIWO algorithm for solving the quadratic
function optimization problem.

itermax r0 rf Nmax Nmin Maximum weed
population

30 0.01 0.00001 5 1 25
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parameter one can determine whether the system is in the
chaotic state, or in the stable state. The bifurcation diagram
(or Feigenbaum diagram) for logistic map, which shows
the distribution of x against different values of a, is de-
picted in Fig. 2. The chaotic behavior of the sequence is en-
sured when a = 4, provided that the initial value for the
chaotic variable (x) is in the range of (0,1) except for points
x = {0.25,0.5,0.75}.

3.1.2. Sinusoidal map
The sinusoidal map or the sinusoid iterator is defined by

xkþ1 ¼ ax2
k sinðpxkÞ ð4Þ

which ensures chaotic behavior in the span of (0,1). Fig. 3
shows the variations of the chaotic variable versus changes
Table 2
The numerical results of quadratic function optimization.

Mean Max Min

CIWO
Logistic map 1.0001 1.0004 0.9999
Sinusoidal map 1.0001 1.0002 0.9997
Tent map 1.0565 1.1456 0.9964

PSO 0.9998 1.0002 0.9996
CPSO 1.0003 1.0210 0.9752
IWO 1.0104 1.1208 0.9874
GA 1.0520 1.2337 0.7508
in the control parameter. As it can be seen, the perfor-
mance of the system becomes chaotic when a = 2.3. It is
apparent form Figs. 2 and 3 that the logistic map and the
sinusoidal map are analogous.
3.1.3. Tent map
The tent map exhibits chaotic dynamics. This mapping

generates chaotic sequences in data range (0,1). The fol-
lowing equation defines the tent map:

xkþ1 ¼
axk x < 0:5
að1� xkÞ x P 0:5

�
for a ¼ 2 ð5Þ
3.2. Chaotic invasive weed optimization

The goal of the optimization algorithm is to minimize

f ðx1; x2; . . . ; xmÞ
subject to
xi

min < xi < xi
max i ¼ 1; . . . ;m

The steps of the proposed CIWO algorithm proceeds as
follows:
Median SD f ð�xÞ

1.0001 1.6728e�4 1.9545e�7
1.0000 2.1542e�4 1.9053e�7
1.0165 0.0711 0.0362

1.0000 2.7431e�4 2.1116e�7
1.0031 6.7839e�4 2.5033 e�7
0.9939 0.0923 0.0639
0.7934 0.1737 0.1141



Fig. 6. The Rosenbrok’s function with two variables and a global minimum at (x1,x2,y) = (0,0,0).

Table 3
Parameter values of the CIWO algorithm for solving the Rosenbrok function minimization problem.

itermax r0 rf Nmax Nmin Maximum weed population

30 0.025 0.00001 5 1 20

Table 4
The numerical results of Rosenbrok function optimization.

Mean Max Min Median SD f ð�xÞ

CIWO
Logistic map �4.6824e�6 3.0175e�4 �5.2036e�5 �4.5788e�5 1.8445e�4 2.702e�6
Sinusoidal map 0 0 0 0 0 0
Tent map 5.1627e�4 7.4979e�4 3.1353e�4 4.7165e�4 1.6140e�4 2.8507e�4

PSO 0.0008 0.0003 0.9996 0.0001 6.0127e�4 2.7846e�6
CPSO 2.8428e�4 5.2628e�4 �7.8236e�5 �2.4193e�4 3.6382 � 4 3.4529e�6
IWO 0.0089 0.0701 0.0057 0.0109 0.0842 0.0649
GA 0.0386 0.1592 0.0031 0.0623 0.1205 0.1641

Fig. 7. The Rastrigin’s function with two variables and a global minimum at (x1,x2,y) = (0,0, 0).
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Table 5
Parameter attributes of the CIWO algorithm in the Rastrigin function optimization problem.

itermax r0 rf Nmax Nmin Maximum weed population

30 0.01 0.000001 3 1 10

Table 6
The simulation results of Rastrigin function minimization.

Mean Max Min Median SD f ð�xÞ

CIWO
Logistic map �1.662e�5 2.4195e�5 �3.0059e�5 �1.4337e�5 2.2130e�4 4.8126e�6
Sinusoidal map 0 0 0 0 0 0
Tent map 0.0012 0.0054 0 0.0033 8.9421e�3 0.00202

PSO 0.0039 0.0081 0.0019 0.0056 0.0542 0.0112
CPSO 1.3327e�4 �3.1284e�4 �2.0256e�5 1.5375e�4 3.0027e�4 9.3492e�4
IWO 0.0373 0.0494 0.0012 0.0218 0.0987 0.0555
GA 0.0808 0.0138 0.0056 0.0349 0.011 0.0739
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(1) Initially, set the maximum and minimum value for
each variable exploited in the optimization of fitness
function. Chaotically distribute the pioneering seeds
over the field using the chaotic maps described in
Section 3.1. It is worth noting that the variables
should be normalized to the range of (0,1) before
applying a chaotic map. The normalization proce-
dure is described next:
I. Transform variable x to x̂ confined in the data

range (0,1):
x̂ ¼ x� xmin

xmax � xmin
ð6Þ
II. Apply the chaotic sequence to the transformed
variable xproducing a new value.

III. Translate x̂ into the range (xmin,xmax):
x ¼ xmin þ x̂ðxmax � xminÞ ð7Þ
(2) Evaluate each weed, and rank them according to
their fitness in the population.

(3) Produce new seeds with respect to each weed’s
ranking in the population using Eq. (1). The newly
created seeds are dispersed randomly on the field
with the standard deviation computed by Eq. (2).

(4) The newly generated seeds are chaotically distrib-
uted in the neighborhood of the flowering weed
using one of the chaotic maps outlined in Section
3.2. If the current chaotically distributed seed has a
better estimation than the previous seed, keep the
new one. Otherwise, the chaotic sequence is contin-
ued. By taking advantages of the local search superi-
orities of chaotic search, the algorithm is guaranteed
to converge much faster.

(5) The seeds are ranked again, and those with lower fit-
ness are eliminated to reach the maximum number
of weeds allowed which is preset by the user.

(6) The algorithm continues at step 3 until maximum
number of iterations is reached or a predetermined
preciseness criterion is satisfied.

The pseudo code of the overall CIWO algorithm is given
in Fig. 4.
4. Numerical results

4.1. Quadratic function

The first fitness function suggested is the simple qua-
dratic function which is quite prevalent in nonlinear opti-
mization problems encountered in engineering. The
quadratic function is described as

f ð�xÞ ¼
X10

i¼1

ð1� xiÞ2 ð8Þ

where the variables are restricted to (�10,10). It is obvious
that the minima lies in f ð�xÞ ¼ 0 as x = (1,1, . . . ,1). Fig. 5
illustrates a 3-D quadratic function. For the purpose of
optimization, the parameters of the CIWO algorithm are
set as illustrated in Table 1. Numerical results based on
the proposed CIWO method are provided in Table 2.

4.2. Rosenbrok function

The 3-D Rosenbrok function (also known as the Rosen-
brok valley or banana) is depicted in Fig. 6. This non-convex
function has a special interaction among its variables which
is widely used for evaluating optimization algorithms. The
Rosenbrok function is given as follows

f ð�xÞ ¼
X9

i¼1

100 xiþ1 � x2
i

� �2 þ ð1� xiÞ2
� �

ð9Þ

where the variables can alter in the range (�4,4). Parame-
ter selection of the CIWO algorithm is addressed in Table 3.
Optimization results using CIWO are presented in Table 4.

4.3. Rastrigin function

Rastrigin’s function is a typical example of multi-modal
functions which is used to test the capabilities of optimiza-
tion methods. Fig. 7 shows the 3-D Rastrigin function.
Equation below expresses the Rastrigin function as used
in this study



Fig. 8. The Griewangk’s function with two variables and a global
minimum at (x1,x2,y) = (0,0, 0) (a) without enlargement (b) medium
enlargement (c) high enlargement.
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f ð�xÞ ¼
X10

i¼1

10þ x2
i � 10 cosð2pxiÞ

� �
ð10Þ
Table 7
Parameter values of the CIWO algorithm in the Griewangk function minimization

itermax r0 rf Nm

30 0.001 0.00001 8
The problem variables are confined to x 2 (�5,5). CIWO
parameters are given in Table 5, and the simulation results
are addressed in Table 6.

4.4. Griewangk function

Griewangk function is a continuous non-convex multi-
modal quadratic test function which is portrayed in
Fig. 8. The function is given by the equation given below

f ð�xÞ ¼
X10

i¼1

x2
i

4000

� �
�
Y10

i¼1

cos
xiffiffi

i
p
� �

þ 1 ð11Þ

in which the bound is x 2 (�600,600). As it is obvious, the
minimum of the function occurs at �x0 ¼ ð0; 0; . . . ;0Þ. The
CIWO algorithm is tuned according to the parameters given
in Table 7, and optimization results are shown in Table 8.

4.5. Optimization problems with nonlinear constraints

In order to further illustrate the usefulness of the pro-
posed CIWO method, the performance of the CIWO algo-
rithm is tested against two optimization problems with
nonlinear constraints from Ref. [26]. Note that these non-
linear constrained problems can be readily dealt with by
adding a step which checks whether the constraint is fea-
sible for a possible solution. The parameter selection of
the CIWO algorithm for both problems provided in this
section is similar to those given in Table 1.

The first problem is to minimize

f ð�xÞ ¼ �ð
ffiffiffi
n
p
Þn
Yn

i¼1

xi ð12Þ

Subject to

Xn

i¼1

x2
i � 1 ¼ 0 ð13Þ

where n = 10 and 0 < xi < 1 (i = 1,2, . . . ,10). The global min-
imum is located at �x0 ¼ ð0:316243;0:316243; . . . ;0:3162
43Þ where f ð�xÞ ¼ �1:0005. The results of applying CIWO
along with IWO, PSO, CPSO, and GA are given in Table 9.

The second problem derived from [26] is to minimize

f ð�xÞ ¼ �ð100� ðx1 � 5Þ2 � ðx2 � 5Þ2 � ðx3 � 5Þ2Þ=100

ð14Þ

Subject to

ðx1 � pÞ2 þ ðx2 � qÞ2 þ ðx3 � rÞ2 � 0:0625 6 0 ð15Þ

wherein 0 < xi < 10 (i = 1,2,3) and p, q, r = 3, 4, 5. The feasi-
ble region of search space consists of 43 disjoint spheres.
The optimum solution is �x0 ¼ ð5;5;5Þ where f ð�xÞ ¼ �1.
Table 10 shows the results obtained utilizing the CIWO
algorithm.
problem.

ax Nmin Maximum weed population

2 10



Table 8
The simulation results of Griewangk function minimization.

Mean Max Min Median SD f ð�xÞ

CIWO
Logistic map �9.8675e�6 2.4260e�4 �5.4856e�5 1.7569e�6 2.1494e�4 2.8834e�8
Sinusoidal map 0 0 0 0 0 0
Tent map 3.5468e�4 0.0010 �5.4477e�4 4.7771e�4 6.8058e�4 6.8313e�7

PSO 0.0001 0.0004 0.9998 0.0002 1.9984e�4 3.1398e�8
CPSO �3.3749e�6 4.9250e�4 �4.8956e�5 3.2636e�6 3.7428e�4 4.8258e�7
IWO 0.1268 0.1544 0.0843 0.0997 0.0899 0.1392
GA 0.1835 0.3336 0.0731 0.0542 0.1981 0.4325

Table 9
The numerical results regarding the optimization problem defined by Eqs. (12) and (13).

Mean Max Min Median SD f ð�xÞ

CIWO
Logistic map 0.3172 0.3185 0.3029 0.3163 0.0332 �0.9823
Sinusoidal map 0.3162 0.3171 0.3158 0.3167 0.0002 �1.0002
Tent map 0.3183 0.3211 0.2987 0.3099 0.0013 �0.9977

PSO 0.3160 0.3437 0.2968 0.3003 0.0089 �0.9981
CPSO 0.3158 0.3199 0.3003 0.3135 0.0314 �0.9923
IWO 0.3326 0.3528 0.2643 0.1997 0.0979 �0.7625
GA 0.4211 0.5731 0.2374 0.2114 0.1109 �0.3563

Table 10
The numerical results regarding the optimization problem defined by Eqs. (14) and (15).

Mean Max Min Median SD f ð�xÞ

CIWO
Logistic map 4.9981 5.0246 4.9777 4.9973 0.0012 �1.0028
Sinusoidal map 4.9999 5.0023 4.9897 4.9986 0.0002 �1.0001
Tent map 4.9873 5.0682 4.8985 4.9969 0.0231 �0.9982

PSO 4.9393 5.0999 4.8993 4.8976 0.0013 �1.0278
CPSO 4.9972 5.0184 4.9193 4.9985 0.0019 �1.0098
IWO 4.8001 5.1066 4.8185 4.9587 0.0837 �0.9332
GA 4.7273 5.3827 4.5292 4.9573 0.1042 �0.8369
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Having assessed the simulation results given in this sec-
tion, we adopt the sinusoidal map as the chaotic sequence
generator in CIWO methodology.
5. Parameter identification of chaotic systems using
CIWO algorithm

5.1. The identification algorithm

The parameter identification of chaotic systems is an
active research subject [27–32]. Thus far, several invalu-
able investigations have been conducted by researchers
suggesting the utilization of evolutionary algorithms, such
as PSO, GA, COA, and etc., for identification of chaotic sys-
tems [32–38]. Consider a chaotic dynamical system de-
fined by

~xo ¼ Fð~x;WÞ ð16Þ

where ~x denotes the state vector, W represents the un-
known parameter vector, and (o) is the derivative operator.
The identification method based on CIWO algorithm is dis-
cussed next.
5.1.1. Preliminaries
Each weed includes a string of different values of

unknown parameters. The suggested fitness function is
given below

Jc ¼
XN

t¼0

ðx1ðtÞ� x̂1ðtÞÞ2 þ ðx2ðtÞ � x̂2ðtÞÞ2 þ � � � þ ðxMðtÞ� x̂MðtÞÞ2
h i

ð17Þ

In which x̂iðtÞ is the estimated ith state at time step t. N is
the number of samples from the system to be implemented
for identification. M denotes the number of state variables.
Note that in case of discrete-time chaotic systems the
fitness function converts to

Jd ¼
XN

i¼1

ðx1ðiÞ � x̂1ðiÞÞ2 þ ðx2ðiÞ � x̂2ðiÞÞ2 þ � � � þ ðxMðiÞ � x̂MðiÞÞ2
h i

ð18Þ

Once the information about the states of a chaotic system
is available, the identification algorithm can be readily
applied. In this study, the system parameters are set in
advance, and a pre-defined level of noise is added to the



Fig. 9. Trajectories of Rossler’s system in x1x2-plane. (b) Rossler’s
attractor in x1x3-plane. (c) Rossler’s system in x2x3-plane.

Table 12
Parameter identification results of Rossler’s system.

a b c J

CIWO 0.1002 0.0999 13.9998 3.7413e�14
IWO 0.1148 0.1015 14.1087 18.9478
CPSO 0.1072 0.1045 14.0216 3.2738e�8
PSO 0.1000 0.1003 13.9993 8.1234e�10
COA 0.1088 0.1007 13.7542 41.3926
GA 0.3936 0.2401 12.9959 89.4827

Table 11
Parameter selection of the CIWO algorithm for parameter estimation of
Rossler’s system.

itermax r0 rf Nmax Nmin Maximum weed
population

50 0.01 0.000001 5 1 20
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system. Then, the system is simulated and state values are
calculated for each time step.

5.1.2. The algorithm

I. To begin, a set of initial values are assigned to each
parameter. Afterwards, these values are encoded
into weeds. This can be done as it is described in
the first step of the CIWO algorithm.

II. Following the CIWO steps, the ranking, the chaotic
search and the execution stages are performed
accordingly.

III. When a desired level of precision; i.e., jJj 6 e where e
is very small number close to zero, or the maximum
number of iteration cycles is reached the algorithm
abolishes.

IV. The optimum values of parameters are extracted
from the best weed which has most aptly minimized
the fitness function.

5.2. Examples

5.2.1. Rössler’s system (Rössler attractor)
In 1976, Otto E. Rössler introduced a simple continuous-

time dynamical system which displayed chaotic perfor-
mance. The system is reportedly very helpful in modeling
the equilibrium of chemical processes [39,40]. Rössler’s
system of differential equations is

_x1 ¼ �x2 � x3

_x2 ¼ x1 þ ax2

_x3 ¼ bþ x1x3 � cx3 ð19Þ

The parameters a, b, and c determine the system’s evolu-
tion. Originally, Rössler studied the case in which a = 0.2,
b = 0.2, and c = 5.7; however, in this investigation a = 0.1,
b = 0.1, and c = 14 are chosen, since this set of values are
more frequently used. The noise level is chosen to be
0.01 which is defined by the noise standard deviation ratio
divided by standard deviation of the noise-free system. The
phase diagrams of the simulated Rössler system are given
in Fig. 9. The identification algorithm as discussed in sec-
tion 5.1.2. is applied. The algorithm settings and estimated
parameters are provided in Tables 11 and 12, respectively.

5.2.2. Lorenz’s system (Lorenz attractor)
The Lorenz’s system was proposed by Edward Lorenz in

1963 as he was undertaking research on weather predic-
tion. The differential equations, actually, designates a
mathematical model for thermal convection. The model



Fig. 10. The plot of trajectory Lorenz’s system x1x2-plane. (b) The plot of
trajectory Lorenz’s system x1x3-plane. (c) The plot of trajectory Lorenz’s
system x2x3-plane.

Table 13
Parameter selection of the CIWO algorithm for parameter estimation of
Lorenz’s system.

itermax r0 rf Nmax Nmin Maximum weed
population

70 0.01 0.000001 8 1 35

Table 14
Parameter approximation results of Lorenz’s system.

a b c J

CIWO 10.0000 28.0002 2.6666 3.846e�12
IWO 10.4884 27.6826 2.8782 11.5623
CPSO 10.0020 28.0101 2.6676 3.3359e�5
PSO 10.0001 27.9982 2.6667 7.641e�5
COA 11.4133 26.3016 3.1582 284.6153
GA 9.5968 29.5427 2.0152 344.1973

1118 M. Ahmadi, H. Mojallali / Chaos, Solitons & Fractals 45 (2012) 1108–1120
involves descriptions of heat distribution, the motion of
viscous fluids (atmosphere), and the driving force of ther-
mal convection [9]. The Lorenz’s system is expressed as
follows

_x1 ¼ aðx2 � x1Þ
_x2 ¼ x1ðb� x3Þ � x2

_x3 ¼ x1x2 � cx3 ð20Þ
The values for system parameters are listed below which
ensure a chaotic behavior

a ¼ 10; b ¼ 28; c ¼ 8=3

By setting the system parameters as given above and
adding the same noise level as in the previous example,
the system performance is simulated. The system trajecto-
ries are given in Fig. 10.

The CIWO algorithm as discussed is applied. Tables 13
and 14 provide the identification results and the CIWO
algorithm’s parameter selection.

5.2.3. Henon’s System
The Henon System is one of the most well studied

chaotic discrete-time dynamic systems [41]. The dynamics
of the system are governed by

x1ðkþ 1Þ ¼ x2ðkÞ þ 1� ax2
1ðkÞ ð21:aÞ

x2ðkþ 1Þ ¼ bx1ðkÞ ð21:bÞ

Henon map possess chaotic behavior as a = 1.4 and b = 0.3.
The system is simulated and the phase space diagram of
Henon map is depicted in Fig. 11. The identification results
and experiment attributes are listed in Tables 15 and 16.
6. Conclusions

In this paper, a new straight forward hybrid optimiza-
tion algorithm is proposed combining the COA and the
IWO. The capabilities of the optimization algorithm are
verified through solving a series of optimization problems
using multi-dimensional benchmark functions. A signifi-
cant application put forward in this study is that the pro-
posed CIWO algorithm can be implemented for the
purpose of parameter identification of chaotic systems.
The results based on the proposed scheme are compared
with those of the IWO, COA, PSO, CPSO, and GA, where in
all cases the CIWO strategy contributes to superior estima-
tion performance. A suggested topic for further research is



Fig. 11. Phase space diagram of Henon’s system.

Table 15
Parameter assortment of the CIWO algorithm for parameter identification
of Henon’s system.

itermax r0 rf Nmax Nmin Maximum weed
population

40 0.01 0.000001 5 1 15

Table 16
Parameter identification results of Henon’s system.

a b J

CIWO 1.3999 0.3000 1.4249e�9
IWO 1.3547 0.2789 5.6631
CPSO 1.3991 0.2893 7.220e�2
PSO 1.3989 0.3001 3.1376e�4
COA 1.3978 0.3000 0.0129
GA 1.5083 0.1198 10.3647
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to exploit the CIWO algorithm to cope with the challenging
optimization problems arise in engineering applications.
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