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Abstract: This paper is concerned with robust stabilization and H∞ control of piecewise
linear switched systems subject to uncertainty in the context of Filippov solutions. The analysis
developed here encapsulates solutions with infinite switching in finite time. First, a set of linear
matrix inequalities are brought forward which determines sufficient conditions to investigate
the asymptotic stability of Filippov solutions. Then, a method to construct robust stabilizing
switching controllers is proposed. Subsequently, the latter result is extended to switching
controllers with H∞ performance. The suggested controller synthesis schemes are based on
solving sets of bilinear matrix inequalities for which appropriate algorithms are delineated.
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1. INTRODUCTION

An important class of hybrid systems are piecewise linear
(PWL) systems, which has received tremendous attention
in open literature (de Best et al. (2008), Azuma et al.
(2008), Dobrescu et al. (2008) Johansson and Rantzer
(1998), Goncalves et al. (2003), Chan et al. (2004), Ohta
and Yokoyama (2010), Leth and Wisniewski (2012), Jo-
hansson (2003), Sun (2010), Branicky (1998), Hassibi and
Boyd (1998),Dobrescu et al. (2008)). By a PWL system,
we understand a family of linear systems defined on poly-
hedral sets such that the dynamics inside a polytope is
governed by a linear dynamic equation. The union of
these polyhedral sets forms the state-space. We say that a
”switch” has occurred whenever a trajectory passes to an
adjacent polytope.

The stability analysis of PWL systems is an intricate
assignment. It is established that even if all the subsys-
tems are stable, the overall system may possess divergent
trajectories (Branicky (1998)). Furthermore, the behav-
ior of solutions along the boundary of polytopes (facets)
may engender unstable trajectories where transitions are,
generally speaking, multi-valued. That is, a PWL system
with stable Carathéodory solutions may possess divergent
Filippov solutions such that the overall system is unstable
(see Example 5 in Leth and Wisniewski (2012)). Hence,
the stability of the Carathédory solutions does not imply
the stability of the overall PWL system.

The stability problem of PWL systems has been addressed
by a number of researchers (Johansson and Rantzer (1998),

Leth and Wisniewski (2012)). An efficacious contribution
was made by Johansson and Rantzer (1998). The authors
proposed a number of LMI feasibility tests to investigate
the exponential stability of a given PWL system by in-
troducing the concept of piecewise quadratic Lyapunov
functions. Following the same trend, Chan et al. (2004)
extended the results to the case of uncertain PWL sys-
tems. The authors also brought forward a H∞ controller
synthesis scheme for uncertain PWL systems based on a
set of LMI conditions.

However, the solutions considered implicitly in both con-
tributions are defined in the sense of Carathéodory. This
means that a solution of a PWL system is the concate-
nation of classical solutions on the facets of polyhedral
sets. This connotates that sliding phenomena or solutions
with infinite switching in finite time are disregarded which
according to (Leth and Wisniewski (2012)) is a critical
drawback. Motivated by recent trends in discontinuous
control systems (Boiko (2009)) and the popular sliding
mode control techniques (Edwards et al. (2006)), in this
study we consider Filippov solutions (Filippov (1988))
instead of the conventional Caratheódory solutions. Not
to mention that this subsumes sliding modes and solutions
with infinite switching in finite time. Our approach is
established upon the results reported by Leth and Wis-
niewski (2012), wherein the authors applied the theory
of differential inclusions to derive stability theorems for
switched systems with Filippov solutions. The results ex-
pounded in this paper are formulated as a set of LMI or
bilinear matrix inequality (BMI) conditions which can be
cast as semi-definite programming problems.
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The framework of this paper is organized as follows. The
subsequent section discusses the robust stability results.
In Section 3, a stabilizing state-feedback controller for
uncertain PWL systems is formulated. The H∞ Controller
synthesis methodology and a V-K iteration algorithm to
deal with the BMI conditions are described in Section 4.
The accuracy of the proposed method is evaluated by two
simulation examples in Section 5. The paper ends with
conclusions in Section 6.

2. ROBUST STABILITY

2.1 Notations and Definitions

Consider a class of PWL systems with Filippov solutions
S = {X ,U ,V, X, I, F,G}, where X ⊆ Rn is a polyhedral
set representing the state space, X = {Xi}i∈I is the
set containing the polytopes in X with index set I =
{1, 2, . . . , nX} (note that

⋃
i∈I Xi = X ). Each polytope

Xi is characterized by the set {x ∈ X | Eix < 0} where
the notation < signifies the component-wise inequality.
U is the control space and V is the disturbance space,
which are both subsets of Euclidean spaces. In addition,
each function v(t) belongs to L2[0,∞). F = {fi}i∈I and
G = {gi}i∈I are families of linear functions associated with
the system states x and outputs y. Each fi consists of six
elements (Ai, Bi, Di; ∆Ai,∆Bi,∆Di) and each gi is com-
posed of four elements (Ci, Gi; ∆Ci,∆Gi). Furthermore,
fi : Yi × U × V → Rn; (x, u, v) 7→

{
z ∈ Rn | z = (Ai +

∆Ai)x + (Bi + ∆Bi)u + (Di + ∆Di)v
}

and gi : Yi ×
U → Rm; (x, u) 7→

{
z ∈ Rm | z = (Ci + ∆Ci)x + (Gi +

∆Gi)u
}

where Yi is an open neighborhood of Xi. The
set of matrices (Ai, Bi, Ci, Di, Gi) are defined over the
polytope Xi and (∆Ai,∆Bi,∆Ci,∆Di,∆Gi) encompass
the corresponding uncertainty terms. The dynamics of the
system can be described by

ẋ(t)∈ co
(
F
(
x(t), u(t), v(t)

))
(1)

y(t)∈ G
(
x(t), u(t)

)
(2)

where, co(·) denotes the convex hull, the set valued maps
(Aubin and Cellina (1984)) F and G are defined as

F :X × U × V → 2X

; (x, u, v) 7→ {z ∈ Rn | z = fi(x, u, v) if x ∈ Xi}
(3)

G :X × U → 2R
m

; (x, u) 7→ {z ∈ Rm | z = gi(x, u) if x ∈ Xi} (4)

where the notation 2A means the power set or the set
of all subsets of A. Denote by Ĩ = {(i, j) ∈ I2 | Xi ∩
Xj 6= ∅, i 6= j} the set of index pairs which determines the
polytopes with non-empty intersections. We now assume
that each polytope is the intersection of a finite set of
supporting half spaces. By Nij denote the normal vector
pertained to the hyperplane supporting both Xi and Xj .
Consequently, each boundary can be characterized as

Xi ∩Xj = {x ∈ X | NT
ijx ≈ 0, Hijx < 0, (i, j) ∈ Ĩ} (5)

where ≈ represent the component-wise equality and the in-
equalityHijx < 0 confines the hyperplane to the interested
region. Throughout the paper, the matrix inequalities
should be understood in the sense of positive definiteness;
i.e., A > B (A ≥ B) means A−B is positive definite (semi-
definite). In case of matrix inequalities, I denotes the unity
matrix (the size of I can be inferred from the context) and
should be distinguished from the index set I. In matrices,
? in place of a matrix entry amn means that amn = aTnm.

A Filippov solution to (1) is an absolutely continuous
function [0, T ) → X ; t 7→ φ(t) (T > 0) which solves the
following Cauchy problem

φ̇(t) ∈ co
(
F
(
φ(t), u(t), v(t)

))
a.e., φ(0) = φ0 (6)

In the sequel, it is assumed that at any interior point
x ∈ X there exists a Filippov solution to system (1).
This can be evidenced by Proposition 5 in (Leth and
Wisniewski (2012)). For more information pertaining to
the solutions and their existence or uniqueness properties,
the interested reader is referred to the expository review
(Cortes (1998)) and the didactic book (Filippov (1988)).
We underscore that there exists plenty of definitions for
solutions of discontinuous systems e.g. Krasovskii, Aizer-
man and Gantmakher (see Cortes (1998) and Chapter 2 in
Yakubovich et al. (2004) for a comparison); however, only
the Filippov solutions enjoy a rich theoretical develope-
ment made by A.F. Filippov (Filippov (1988)) and have
been extensively exploited in the analysis of discontinuous
systems encountered in engineering applications (Giaouris
et al. (2008), Paden and Sastry (1987), Jing et al. (2011),
Forti and Nistri (2003)).

2.2 Stability of PWL systems with Filippov Solutions

In (Leth and Wisniewski (2012)), a stability theorem
for switched systems with Filippov solutions is proposed
which is reformulated for PWL systems in the next propo-
sition.

Proposition 1. Consider the following autonomous PWL
system

ẋ ∈ co
(
F(x)

)
(7)

with ∆Ai ≈ 0. If there exists quadratic forms Φi(x) =
xTQix, Ψi(x) = xT (ATi Qi + QiAi)x and Ψij(x) =
xT (ATj Qi +QiAj)x satisfying

Φi(x) > 0 for all x ∈ Xi \ {0} (8)

Ψi(x) < 0 for all x ∈ Xi \ {0} (9)

for all i ∈ I, and

Ψij(x) < 0 for all x ∈ Xi ∩Xj \ {0} (10)

Φi(x) = Φj(x) for all x ∈ Xi ∩Xj (11)

for all (i, j) ∈ Ĩ. Then, the the equilibrium point 0 of (7)
is asymptotically stable.

Remark 1. The inclusions x ∈ Xi \ {0} and x ∈ Xi ∩ Xj

are analogous to {x ∈ X | Eix � 0} and (5), respectively.

It is worth noting that Conditions (8)-(9) are concerned
with the positivity of a quadratic form over a polytope;
whereas, (10) is about positivity over a hyperplane. Con-
dition (11) asserts that the candidate Lyapunov functions
should be continuous (along the facets). A well known LMI
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formulation of conditions (8), (9) and (11) was proposed in
(Johansson and Rantzer (1998)) which is described next.
Let us construct a set of matrices Fi, i ∈ I such that
Fix = Fjx for all x ∈ Xi ∩ Xj and (i, j) ∈ Ĩ. Then,
it follows that the piecewise linear candidate Lyapunov
functions can be formulated as

V (x) = xTFTi MFix = xTQix if x ∈ Xi (12)

where, the free parameters of Lyapunov functions are
concentrated in the symmetric matrix M . In the following
proposition we generalize the results proposed by Johans-
son and Rantzer (1998) to PWL systems with the more
general Filippov solutions.

Proposition 2. Consider the PWL system (7) with Fillipov
solutions, and the family of piecewise quadratic Lyapunov
functions Vi(x) = xTQix = xTFTi MFix, i ∈ I. If
there exist a set of symmetric matrices Qi, three sets of
symmetric matrices Ui, Si, Tij with non-negative entries,
and matrices Wij of appropriate dimensions with i ∈ I and

(i, j) ∈ Ĩ, such that the following LMI problem is feasible

Qi − ETi SiEi > 0 (13)

ATi Qi +QiAi + ETi UiEi < 0 (14)

for all i ∈ I, and

ATj Qi +QiAj +WijN
T
ij +NijW

T
ij +HT

ijTijHij < 0

(15)

for all (i, j) ∈ Ĩ. Then, the equilibrium point 0 of (7) is
asymptotically stable.

Proof. Matrix inequalities (13) and (14) are the same as
Equation (11) in Theorem 1 in (Johansson and Rantzer
(1998)) which satisfy (8)-(9). The continuity of the Lya-
punov functions is also ensured from the assumption that
Vi(x) = xTQix = xTFTi MFix , i ∈ I since Fix = Fjx,

for all x ∈ Xi ∩ Xj and (i, j) ∈ Ĩ. (10) is equivalent to
xT (ATj Qi+QiAj)x < 0 for {x ∈ X | NT

ijx ≈ 0, Hijx � 0}.
Applying the S-procedure and Finsler’s lemma (Polik and
Terlaky (2007)), we obtain (15) for a set of matrices Tij ,

(i, j) ∈ Ĩ with non-negative entries and Wij , (i, j) ∈ Ĩ with
appropriate dimensions.

We remark that algorithms for constructing matrices Ei
and Fi, i ∈ I, are described in (Johansson (2003)).

Remark 2. A similar LMI formulation to (11) can be found
in (Johansson (2003)); whereas, our analysis, in this paper,
is established upon the stability theorem delineated in
Proposition 10 in (Leth and Wisniewski (2012)) which
considered the Filippov Solutions.

2.3 Uncertain PWL Systems with Filippov Solutions

Henceforth, we will focus on the family of uncertain PWL
systems given by (1). In order to derive the stability
and control results, we assume that the upper bound of
uncertainties are known apriori; i.e.,

∆Ai
T∆Ai ≤ATi Ai

∆Bi
T∆Bi ≤BTi Bi

∆Ci
T∆Ci ≤ CTi Ci

∆Di
T∆Di ≤DTi Di

∆Gi
T∆Gi ≤GTi Gi (16)

in which, (Ai,Bi, Ci,Di,Gi) are any set of constant matri-
ces with the same dimension as (Ai, Bi, Ci, Di, Gi) satis-
fying (16).

Lemma 1. Consider the uncertain PWL system (7). If

there exist small positive constants εi, i ∈ I, εij , (i, j) ∈ Ĩ,
a set of symmetric matrices Qi, i ∈ I, three sets of
symmetric matrices Ui, Si, i ∈ I, Tij , (i, j) ∈ Ĩ, with

non-negative entries, and matrices Wij , (i, j) ∈ Ĩ, of
appropriate dimensions, such that

Qi − ETi SiEi > 0 (17)[
Ξi Qi
? −εiI

]
< 0 (18)

for all i ∈ I, and [
Ξij Qi
? −εijI

]
< 0 (19)

for all (i, j) ∈ Ĩ, where Ξi = ATi Qi + QiAi + ETi UiEi +
εiATi Ai and Ξij = ATj Qi + QiAj + WijN

T
ij + NijW

T
ij +

HT
ijTijHij+εijATj Aj . Then, every Filippov solution of the

autonomous uncertain system (7) converges to the origin
asymptotically.

Proof. Condition (17) is equivalent to (13). We need to
show that (18) and (19) correspond to (14) and (15),
respectively. Substituting the uncertain vector Āi = Ai +
∆Ai in (15) yields (Aj + ∆Aj)

TQi + Qi(Aj + ∆Aj) +
WijN

T
ij + NijW

T
ij + HT

ijTijHij < 0 which with little

manipulation leads to ATj Qi +QiAj +WijN
T
ij +NijW

T
ij +

HT
ijTijHij +∆ATj Qi+Qi∆Aj ≤ ATj Qi+QiAj +WijN

T
ij +

NijW
T
ij + HT

ijTijHij + 1
εij
QiQi + εijATj Aj . Using Shur

complement theorem, we arrive at (19). The equivalency
of (18) to (14) can also be proved in a similar manner.

Remark 3. Notice that if the conditions (17)–(19) hold,
then (7) is also asymptotically stable for any ∆Ai satisfy-
ing (16).

3. STABILIZING STATE FEEDBACK CONTROLLER
DESIGN

We are interested in designing a switching controller

u ∈ K(x)

K : X → 2U ;x 7→
{
z ∈ U | z = Kix if x ∈ Xi

}
(20)

for system (1) such that all Filippov solutions of (1)
denoted by φ(t) satisfy limt→∞ φ(t) = 0. Considering a
controller with the structure given by (20), the controlled
system with v ≈ 0 reduces to (7) with F supplanted by

F́ : X → 2X ;x 7→ {z ∈ X | z = Acix if x ∈ Xi}, wherein
Aci = Ai + ∆Ai + (Bi + ∆Bi)Ki.

Lemma 2. The controlled switched system as defined
above is asymptotically stable at the origin provided that
there exist small positive constants εi, i ∈ I, εij , (i, j) ∈ Ĩ,
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matrices Ki, i ∈ I, a set of symmetric matrices Qi, i ∈ I,
three sets of symmetric matrices Ui, Si, i ∈ I , Tij ,

(i, j) ∈ Ĩ with non-negative entries, matricesWij , (i, j) ∈ Ĩ
of appropriate dimensions such that

Qi − ETi SiEi > 0 (21)



Ξi Qi KT
i B

T
i KT

i BTi
?
−εi

3 + ε2i
I 0 0

? ?
−εi

1 + ε2i
I 0

? ? ?
−1

εi
I


< 0 (22)

for all i ∈ I, and



Ξij Qi KT
j B

T
j KT

j BTj
?
−εij

3 + ε2ij
I 0 0

? ?
−εij

1 + ε2ij
I 0

? ? ?
−1

εij
I


< 0 (23)

for all (i, j) ∈ Ĩ.

Proof. We need to demonstrate that (22) and (23)
correspond to (14) and (15), respectively. Substituting
Aci in (15) yields ATj Qi + QiAj + WijN

T
ij + NijW

T
ij +

HT
ijTijHij + ∆ATj Qi + Qi∆Aj + KT

j B
T
j Qi + QiBjKj +

KT
j ∆BTj Qi + Qi∆BjKj ≤ ATj Qi + QiAj + WijN

T
ij +

NijW
T
ij +HT

ijTijHij + 1
εij
QiQi + εij∆A

T
j ∆Aj + 1

εij
QiQi +

εijK
T
j ∆BTj ∆BjKj + KT

j B
T
j Qi + QiBjKj ≤ Ξij + (εij +

3
εij

)QiQi+(εij+ 1
εij

)KT
j B

T
j BjKj+εijK

T
j BTj BjKj . Utiliz-

ing Shur complement theorem, we derive (23). Derivation
of (22) can be done similarly.

Remark 4. The conditions derived in Lemma 2 are BMIs
(Antwerp and Braatz (2000)) in the variables Qi and Ki.

To surmount the BMI tests given in Lemma 2, the follow-
ing V-K iteration algorithm is suggested:

• Initialization: Select a set of controller gains based on
pole placement method or any other controller design
scheme to predetermine a set of initial controller
gains.
• Step V : Given the set of fixed controller gains Ki,
i ∈ I, solve the following optimization problem

min
Qi,Si,Ui,Tij

γi

subject to (21) and

Ξi Qi KT
i B

T
i KT

i BTi
?
−εi

3 + ε2i
I 0 0

? ?
−εi

1 + ε2i
I 0

? ? ?
−1

εi
I


− γiI < 0, (24)



Ξij Qi KT
j B

T
j KT

j BTj
?
−εij

3 + ε2ij
I 0 0

? ?
−εij

1 + ε2ij
I 0

? ? ?
−1

εij
I


− γiI < 0 (25)

for a set of matrices Qi, i ∈ I.
• Step K : Given the set of fixed controller gains Qi,
i ∈ I, solve the following optimization problem

min
Ki,Si,Ui,Tij

γi

subject to (21), (24), and (25)

for a set of matrices Ki, i ∈ I.

The algorithm continues till γi < 0, i ∈ I.

4. ROBUST CONTROLLER SYNTHESIS WITH H∞
PERFORMANCE

In this section, we propose a set of conditions to design
a stabilizing switching controller of the form (20) with
a guaranteed H∞ performance (Dullerud and Paganini
(2000), Stoica (2005), Serbanescu and Popeea (2004)).
That is, a controller such that, in addition to asymptotic
stability, ensures that the induced L2-norm of the operator
from v(t) to the controller output y(t) is less than a
constant η > 0 under zero initial conditions (x(0) = 0);
in other words,

1

2

(∫ ∞
0

yT (τ)y(τ)dτ

) 1
2

≤ η

2

(∫ ∞
0

vT (τ)v(τ)dτ

) 1
2

(26)

given any non-zero v ∈ L2[0,∞).

If we apply the switching controller (20) to (1)-(2), we
arrive at the following controlled system with outputs

ẋ(t)∈ co
(
F̃
(
x(t), v(t)

))
y(t)∈ G̃

(
x(t)

)
(27)

where, F̃ : X × V → 2X ; (x, v) 7→ {z ∈ Rn | z = Acix +
Dciv if x ∈ Xi} and G : X → 2R

m

;x 7→ {z ∈ Rm | z =
Cci(x) if x ∈ Xi} with

Aci =Ai + ∆Ai + (Bi + ∆Bi)Ki

Dci =Di + ∆Di

Cci =Ci + ∆Ci + (Gi + ∆Gi)Ki (28)

Proposition 3. System (27) is asymptotically stable at the
origin with disturbance attenuation η as defined in (26),
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if there exist a set of symmetric matrices Qi, i ∈ I, three
sets of symmetric matrices Ui, Si, i ∈ I , Tij , (i, j) ∈ Ĩ

with non-negative entries, and matrices Wij , (i, j) ∈ Ĩ of
appropriate dimensions such that

Qi − ETi SiEi > 0 (29)

ATciQi +QiAci + ETi UiEi + η−2QiDciD
T
ciQi + CTciCci < 0

(30)
for all i ∈ I, and

ATcjQi +QiAcj +WijN
T
ij +NijW

T
ij +HT

ijTijHij

+ η−2QiDcjD
T
cjQi + CTcjCcj < 0 (31)

for all (i, j) ∈ Ĩ.

Proof. From (29)-(30) and Proposition 2, it can be dis-
cerned that the Filippov solutions of the closed loop sys-
tem (27) converge to origin asymptotically. Additionally,
since Qi = FTi MFi and Fix = Fjx, for all x ∈ Xi ∩
Xj the continuity of the Lyapunov functions is assured.
What remains is to show that the disturbance attenuation
performance is η. Define a multi-valued function

Γ(x) = {z ∈ R | z = Vi(x), if x ∈ Xi} (32)

This can be thought of as a switched Lyapunov function.
Differentiating and integrating Γ with respect to t yields

∫ ∞
0

dΓ

dt
dt=

∫ t1

0

[
xT (ATc1Q1 +Q1Ac1)x

+vTDT
c1Q1x+ xTQ1Dc1v

]
dt+ . . .

+

∫ t2

t1

[
xT (ATc2Q2 +Q2Ac2)x

+vTDT
c2Q2x+ xTQ2Dc2v

]
dt+ . . .

+

r∑
j=1

αj

{∫ tk

tk−1

[
xT (ATcjQk +QkAcj)x

+vTDT
cjQkx+ xTQkDcjv

]
dt

}
+ . . .

+

m∑
j=1

βj

{∫ tl

tl−1

[
xT (ATcjQl +QlAcj)x

+vTDT
cjQlx+ xTQlDcjv

]
dt

}
+ . . .

+

∫ ∞
tn

[
xT (ATcnQn +QnAcn)x

+vTDT
cnQnx+ xTQnDcnv

]
dt

wherein αj ,βj > 0 such that
∑n
j=1 αj = 1, and

∑n
j=1 βj =

1. m and r are the number of neighboring cells to a
boundary where the solutions possess infinite switching in
finite time (in the time intervals of [tk−1, tk] and [tl−1, tl]),
respectively. With the above formulation, we consider a
state evolution scenario including the interior of different
cells as well as the facets. Suppose conditions (30) and (31)
hold, then it follows that

∫ b

a

[
xT (ATciQi +QiAci)x+ vTDT

ciQix+ xTQiDciv
]
dt

<

∫ b

a

[
xT (−ETi UiEi − η−2QiDciD

T
ciQi − CTciCci)x

+vTDT
ciQix+ xTQiDciv + η2vT v − η2vT v

]
dt

≤
∫ b

a

[
− yT y + η2vT v − η2(v − η−2DT

ciQix)T

×(v − η−2DT
ciQix)

]
dt ≤

∫ b

a

(−yT y + η2vT v)dt

Correspondingly,

n∑
j=1

αj

{∫ d

c

[
xT (ATcjQi +QiAcj)x

+vTDT
cjQix+ xTQiDcjv

]
dt

}
<

n∑
j=1

αj

{∫ d

c

[
xT (−WijN

T
ij −NijWT

ij −HT
ijTijHij

−η−2QiDcjD
T
cjQi − CTcjCcj)x+ η2vT v − η2vT v

]
dt

}
≤
∫ d

c

(
− yT y + η2vT v −

n∑
j=1

αj
(
η2(v − η−2DT

cjQix)T

×(v − η−2DT
cjQix)

))
dt ≤

∫ d

c

(−yT y + η2vT v)dt

where, a, b, c, d > 0 are arbitrary non-negative constants
(b > a, and d > c). Finally, we arrive at the justification
that ∫ ∞

0

dΓ

dt
dt≤

∫ t1

0

(−yT y + η2vT v)dt

+

∫ t2

t1

(−yT y + η2vT v)dt+ . . .

+

∫ tk

tk−1

(−yT y + η2vT v)dt+ . . .

+

∫ tl

tl−1

(−yT y + η2vT v)dt+ . . .

+

∫ ∞
tn

(−yT y + η2vT v)dt

which reduces to

Γ
(
x(∞)

)
− Γ

(
x(0)

)
≤
∫ ∞
0

(−yT y + η2vT v)dt

Moreover, note that x(∞) = x(0) = 0. This can be
concluded from the assumption on zero initial conditions,
and from the fact that the system is asymptotically stable
at origin (as demonstrated earlier in this proof). Conse-
quently, we have

0 ≤
∫ ∞
0

(−yT y + η2vT v)dt

which is equivalent to (26). This completes the proof.
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Lemma 3. Given a constant η > 0, the closed loop control
system (27) is asymptotically stable at the origin with
disturbance attenuation η, if there exist constants εij >

0, (i, j) ∈ Ĩ, εi > 0, i ∈ I, matrices Ki, i ∈ I,
a set of symmetric matrices Qi, i ∈ I, three sets of
symmetric matrices Ui, Si, i ∈ I , Tij , (i, j) ∈ I with non-

negative entries, and matricesWij , (i, j) ∈ Ĩ of appropriate
dimensions such that

Qi − ETi SiEi > 0 (33)

Λi < 0 (34)
for all i ∈ I, and

Λij < 0 (35)

for all (i, j) ∈ Ĩ, where

Λi =

Πi Qi KT
i B

T
i KT

i BTi KT
i G

T
i KT

i GTi
? −Θ−1i 0 0 0 0

? ?
−εi

1 + ε2i
I 0 0 0

? ? ?
−1

εi
I 0 0

? ? ? ?
−εi

2 + εi + ε2i
I 0

? ? ? ? ?
−εi

1 + εi + 2ε2i
I


Λij =

Πij Qi KT
j B

T
j KT

j BTj KT
j G

T
j KT

j GTj
? −Θ−1ij 0 0 0 0

? ?
−εij

1 + ε2ij
I 0 0 0

? ? ?
−1

εij
I 0 0

? ? ? ?
−εij

2 + εij + ε2ij
I 0

? ? ? ? ?
−εij

1 + εij + 2ε2ij
I


with Πi = Ξi + (1 + 3

εi
)CTi Ci + (1 + 3εi)CTi Ci, Πij = Ξij +

(1 + 3
εij

)CTj Cj + (1 + 3εij)CTj Cj , Θi = (εi + 3
εi

)I + η−2(1 +
1
εi

)DiD
T
i + η−2(1 + εi)DiDTi , and Θij = (εij + 3

εij
)I +

η−2(1 + 1
εij

)DjD
T
j + η−2(1 + εij)DjDTj .

Proof. We need to apply Proposition 3. Inequality (33)
corresponds to (29). Substituting (28) in (31), the left-
hand side of (31) is simplified as LHS =

(
Aj+∆Aj+(Bj+

∆Bj)Kj

)T
Qi+Qi

(
Aj+∆Aj+(Bj+∆Bj)Kj

)
+WijN

T
ij +

NijW
T
ij +HT

ijTijHij+η−2Qi(Dj+∆Dj)(Dj +∆Dj)
TQi+(

Cj +∆Cj +(Gi+∆Gi)Kj

)T (
Cj +∆Cj +(Gi+∆Gi)Kj

)
≤ ATj Qi + QiAj + WijN

T
ij + NijW

T
ij + HT

ijTijHij +

KT
j B

T
j Qi+QiBjKj+

2
εij
QiQi+εijATj Aj+εijKT

j BTj BjKj+

η−2Qi
(
(1+ 1

εij
)DjD

T
j +(1+εij)DjDTj

)
Qi+(1+εij)C

T
j Cj+

(1 + εij)CTj Cj + 1
εij
CTj Cj + εijK

T
j G

T
j GjKj + 1

εij
CTj Cj +

εijK
T
j GTj GjKj + εijCTj Cj + 1

εij
KT
j G

T
j GjKj + εijCTj Cj +

1
εij
KT
j GTj GjKj +KT

j

(
(1 + 1

εij
)GTj Gj + (1 + εij)GTj Gj

)
Kj .

With some calculation, it can be verified that LHS ≤
Πij+Qi

(
2
εij
I+η−2(1+ 1

εij
)DT

j Dj+η−2(1+εij)DjDTj
)
Qi+

εijK
T
j BTj BjKj + (

2+εij+ε
2
ij

εij
)KT

j G
T
j GjKj + (

1+εij+2ε2ij
εij

)

KT
j GTj GjKj + 1

εij
KT
j B

T
j BjKj + εijQiQi + 1

εij
QiQi +

εijK
T
j B

T
j BjKj

which is equivalent to

LHS ≤ Πij+QiΘijQi+(
1+ε2ij
εij

)KT
j B

T
j BjKj+εijK

T
j BTj BjKj

+(
2+εij+ε

2
ij

εij
)KT

j G
T
j GjKj + (

1+εij+2ε2ij
εij

)KT
j GTj GjKj .

Utilizing Shur complement theorem, (35) can be obtained.
Thus, if (35) is feasible, then (31) is satisfied. Analogously,
it can be proved that (34) is consistent with (30).

It is worth noting that conditions given in Lemma 3 are
BMIs in matrix variables Ki and Qi. In order to deal with
the BMI conditions encountered in Lemma 3, the following
V −K iteration algorithm is suggested:

• Initialization: Select a set of controller gains based on
pole placement method or any other controller design
scheme to predetermine a set of initial controller
gains.

• Step V : Given the set of fixed controller gains Ki,
i ∈ I, solve the following optimization problem

min
Qi,Si,Ui,Tij

γi

subject to (33),Λi − γiI < 0, and Λij − γiI < 0

for a set of matrices Qi, i ∈ I.
• Step K : Given the set of fixed controller gains Qi,
i ∈ I, solve the following optimization problem

min
Ki,Si,Ui,Tij

γi

subject to (33),Λi − γiI < 0, and Λij − γiI < 0

for a set of matrices Ki, i ∈ I.

The algorithm continues till γi < 0, i ∈ I.

5. SIMULATION RESULTS

In this section, we demonstrate the performance of the
proposed approach using numerical examples. Example 1
deals with a switched system with Filippov solutions which
is asymptotically stable at the origin; but, the disturbance
attenuation performance is not satisfactory. Unlike Ex-
ample 1, Example 2 considers an unstable PWL system
in which both asymptotic stability and disturbance miti-
gation are investigated based on the proposed approach.
Not to mention that in both cases uncertainties are also
associated with the nominal systems.

5.1 Example 1

Suppose the state-space X = R2 is divided into four
polytopes corresponding to the four quadrants of the
second dimensional Euclidean space; i.e,
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X1 =
{

(x1, x2) ∈ R2 | x1 > 0 and x2 > 0
}

X2 =
{

(x1, x2) ∈ R2 | x1 < 0 and x2 > 0
}

X3 =
{

(x1, x2) ∈ R2 | x1 < 0 and x2 < 0
}

X4 =
{

(x1, x2) ∈ R2 | x1 > 0 and x2 < 0
}

(36)

Consider a PWL system with Filippov solutions character-
ized by (27) and (28) where the associated system matrices
are given by

A1 = A3 =

[
0 1
−2 0

]
, A2 = A4 =

[
0 1

0.5 0

]

B1 = B2 = B3 = B4 =

[
1
0

]

C1 = C2 = C3 = C4 =

[
2
0

]T

D1 = D2 = D3 = D4 =

[
0

0.1

]T
and the uncertainty bounds specified as

A1 = A3 =

[
0 0.03

−0.03 0

]
,A2 = A4 =

[
0.03 0

0 −0.03

]

C1 = C3 =

[
0.01

0

]T
, C2 = C4 =

[
0

0.01

]T
The matrices regarding the polytopes can be constructed
as

E1 = −E3 =

[
1 0
0 1

]
, E2 = −E4 =

[
−1 0
0 1

]

F1 =

[
E1

I

]
, F2 =

[
E2

I

]
, F3 =

[
E3

I

]
, F4 =

[
E4

I

]

N12 = N34 =

[
1
0

]
, N14 = N23 =

[
0
1

]

H12 = −H34 =

[
0 1
0 0

]
, H14 = −H23 =

[
1 0
0 0

]
Based on Lemma 3, a switching controller as defined in
(20) is designed in order to ensure that (in addition to
preserving the asymptotic stability property of the system)
under zero initial conditions the disturbance signal of
v(t) = 5 cos(πt) is attenuated with η = 0.05. In this
experiment, the constant scalars were preset to ε12 = ε23 =
ε14 = ε34 = 1 and ε1 = ε2 = ε3 = ε4 = 5. The algorithm
was initialized using pole placement method with initial
pole positions of (−1,−2) and controller gains of

K1 = K3 =

[
−3
0

]T
,K2 = K4 =

[
−3
−5

]T
The following solutions was obtained in two iterations

−4 −3 −2 −1 0 1 2 3 4
−4
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−2

−1

0

1

2

3

4

x 2

x
1

Fig. 1. The trajectories of the closed loop system. The
dashed lines illustrate the facets.
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Fig. 2. Evolution of system states when the H∞ con-
troller is applied: with an initial condition on a non-
attractive facet (top) and with an initial condition on
an attractive facet (bottom).

Q1 = Q3 =

[
78.29 5.96
5.96 3.01

]
Q2 = Q4 =

[
33.06 −1.35
−1.35 65.14

]

K1 = K3 =

[
−0.9014
−0.8292

]T
,K2 = K4 =

[
−0.1137
−0.2715

]T
γmin = −7.03921× 10−4

Fig. 1. sketches the trajectories of the closed-loop system
without disturbance when the H∞ controller is incorpo-
rated. This demonstrates that the Filippov solutions of
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Fig. 3. Response of the closed loop control system with
disturbance and zero initial condition: before applying
the H∞ controller (left) and after utilizing the H∞
controller (right).
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Fig. 4. Convergence performance of the proposed V-K
iteration algorithms: the stable controller synthesis
(top) and the H∞ controller synthesis (bottom).

the closed-loop system are asymptotically stable at 0. One
should observe that the solutions entering the facet x2 = 0
cannot leave the facet (the so called attractive sliding mode
property). This is due to the fact that the velocities at both
regions X1 and X2 are toward the facet. We emphasize
that this result could not been achieved by previous studies
which excluded those solutions with infinite switching in
finite time. Moreover, Fig. 2. displays the evolution of the
states of the closed-loop system.

The disturbance mitigation performance of the proposed
method can also be deduced from Fig. 3. As it can
be discerned from the figure, the disturbance signal is
considerably extenuated as the H∞ controller is employed.
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0
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3

4
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x 2

Fig. 5. The trajectories of the closed loop control system:
the stable controller synthesis (top) and the H∞ con-
troller synthesis (bottom). The dashed lines illustrate
the facets.

5.2 Example 2

For the sake of comparison, the example used in (Chan
et al. (2004)) is selected; but, instead of Carathéodory
solutions, Filippov solutions are investigated. Therefore,
the system structure has to be modified as delineated
next. Consider an uncertain PWL system described by
(27) and (28) with I = {1, 2, 3, 4} and the state-space is a
polyhedral set divided into four polytopes. The associated
system matrices are

A1 = A3 =

[
1 0.1
−0.5 1

]
, A2 = A4 =

[
1 0.5
−0.1 −1

]

B1 = B3 =

[
0
1

]
, B2 = B4 =

[
1
0

]

D1 = D2 = D3 = D4 =

[
0
1

]
, C1 = C2 = C3 = C4 =

[
0
1

]T
The uncertainty bounds are characterized as

A1 = A3 =

[
0 0.02

−0.01 0

]
,A2 = A4 =

[
0.01 0

0 −0.02

]

B1 = B3 =

[
0

0.02

]
,B2 = B4 =

[
0.02

0

]
The matrices characterizing the polytopes are given as
follows



Control Engineering and Applied Informatics 11

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

 

 
x

1

x
2

0 50 100 150
0

0.5

1

1.5

2

2.5

3

 

 
x

1

x
2

Fig. 6. Evolution of system states when the H∞ controller
is applied: with an initial condition in the interior of
a polytope (top) and with an initial condition on an
attractive facet (bottom).

E1 = −E3 =

[
−1 1
−1 1

]
, E2 = −E4 =

[
−1 1
1 1

]

F1 =

[
E1

I

]
, F2 =

[
E2

I

]
, F3 =

[
E3

I

]
, F4 =

[
E4

I

]

N12 = N34 =

[
1
1

]
, N14 = N23 =

[
−1
1

]

H12 = −H34 =

[
−1 0
1 0

]
, H14 = −H23 =

[
1 0
1 0

]
It is worth noting that the open-loop system is unstable
and since solutions with infinite switching in finite time
are present the approach reported in (Chan et al. (2004))
and common Lyapunov based methods are not applicable.
The V − K iteration algorithm is initialized using pole
placement method. The assigned closed-loop poles for
the dynamics in each polytope are (−3,−2) and the
corresponding initial controller gains are

K1 = K3 =

[
−119.5
−7

]T
,K2 = K4 =

[
−5
19.5

]T
Using the scheme presented in this paper for a set of
constants ε12 = ε23 = ε14 = ε34 = 10 and ε1 = ε2 =
ε3 = ε4 = 100, the following solutions has been obtained
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Fig. 7. Response of the closed loop control system with
disturbance and zero initial condition: the stable con-
troller synthesis (left) and the H∞ controller synthesis
(right).

Q1 = Q3 =

[
135.26 2.18
2.18 1.83

]
, Q2 = Q4 =

[
84.67 −5.43
−5.43 707.09

]

K1 = K3 =

[
−389.92
−30.14

]T
,K2 = K4 =

[
−12.88
−0.56

]T
γmin = −4.5328× 10−4

for the stable controller synthesis in three iterations and

Q1 = Q3 =

[
463.75 24.94
24.94 2.39

]
, Q2 = Q4 =

[
52.26 −7.39
−7.39 763.47

]

K1 = K3 =

[
−637.72
−30.14

]T
,K2 = K4 =

[
−21.53
−1.69

]T
γmin = −2.7186× 10−5

for the H∞ controller design with η = 0.1 in five iterations.
Consequently, it follows from Lemma 3 that the closed
loop control system is asymptotically stable at the origin
and the disturbance attenuation criterion is satisfied. The
convergence performance of the proposed V-K iteration
algorithms are depicted in Fig. 4. The V-K algorithm
pertaining to stabilizing controller and H∞ controller
took 17.5947 seconds and 31.8351 seconds respectively on
Intel(R) Core(TM)2 Due CPU T7500 @2.20GHz and 3.00
GB of RAM using MATLAB R2010b. Fig. 5. portrays the
simulation results of four different initial conditions (in the
absence of disturbance) which prove the stability of the
closed loop systems. Notice, in particular, that solutions
with infinite switching in finite time on facets are also
present (see Fig. 6.). This should be opposed to the results
in (Chan et al. (2004)) where only Carathódory solutions
are taken into account. Additionally, the simulation results
in the presence of disturbance (v(t) = 4 sin(2πt)) and zero
initial conditions are illustrated in Fig. 7. which ascertains
the disturbance attenuation performance of the proposed
controller.

6. CONCLUSIONS

In this paper, the stability and control problem of PWL
and uncertain PWL systems with Filippov Solutions was
considered. The foremost purpose of this research was
to extend the previous results on PWL systems to the
case of solutions with infinite switching in finite time and
sliding motions. In this regard, we have proposed a set
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of matrix inequality conditions to investigate the stability
of a PWL or uncertain PWL system. Additionally, two
methods based on BMIs are devised for the synthesis of
stable and robust H∞ controllers for PWL and uncertain
PWL systems with Filippov solutions. These schemes has
been examined through simulation experiments.
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