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Abstract: This paper addresses the stability problem of a class of nonlinear switched systems
with partitioned state-space and state-dependent switching. In lieu of the Carathéodory
solutions, the general Filippov solutions are considered. This encapsulates solutions with infinite
switching in finite time. Based on the theory of differential inclusions, a Lyapunov stability
theorem is brought forward. These results are also extended to switched systems subject to
polytopic uncertainty. Furthermore, the proposed stability theorems are reformulated using
the sum of squares decomposition method which provides sufficient means to construct the
corresponding Lyapunov functions via available semi-definite programming techniques.

1. INTRODUCTION

A large group of engineering applications give rise to
systems which encompass both discrete and continuous
dynamics. Mathematically, these systems are character-
ized by a collection of indexed differential or difference
equations describing each subsystem and a switching rule
between them. This rich family of systems is referred to
switched or more generally hybrid systems. Examples of
such systems in real world have been studied in open
literature e.g. Wisniewski and Larsen [2008] and Larsen
et al. [2007].

However despite numerous applications, their stability
analysis has not been covered completely (Lin and An-
taklis [2009]). Several interesting phenomena arise when
dealing with such systems; namely, even if all the sub-
systems are exponentially stable, one cannot guarantee
the stability of the overall system (Branicky [1998]). Con-
versely, an appropriate switching law may contribute to
stability even when all subsystems are unstable (Liberzon
[2003]). Still, depending on the considered type of solutions
(Carathéodory, Filippov, and etc.), discrepant stability
phenomenon may follow. As an illustration, a switched
system with stable Carathéodory solutions, may possess
divergent Filippov solutions (see Leth and Wisniewski
[2012]).

This research is mainly motivated by two contribu-
tions (Pranja and Papachristodoulou [2003]) and (Leth
and Wisniewski [2012]). Leth and Wisniewski [2012] ex-
ploited the theory of differential inclusions (DI) and sug-
gested Lyapunov-like stability theorem for piece-wise lin-
ear switched systems defined on polyhedral sets with
Fillipov solutions. Pranja and Papachristodoulou [2003]

proposed sum of squares based stability analysis tools
for a class of hybrid systems; however, a unified stabil-
ity theorem has not been suggested or fully established.
Additionally, the solutions considered in the latter article
are in the sense of Carathéodory which connotate the
exclusion of solutions with infinite switching in finite time
from the analysis. In the present paper, firstly, we extend
the results reported in (Leth and Wisniewski [2012]) to the
general nonlinear switched systems defined on regular sets
by incorporating the theoretical notions of differential in-
clusions. Secondly, the robust stability problem of switched
systems with polytopic uncertainty and Filippov solutions
is addressed. Lastly, we propose sufficient conditions based
on sum of squares (SOS) decomposition for the suggested
stability theorems. This ensures computationally efficient
means to investigate the stability of switched systems.

This paper is organized as follows. In the next section,
the notations and some mathematical concepts adopted
in this study are limned. The main results of this paper
are brought forward in section 3. Section 4 demonstrates
the accuracy of the proposed methodology via an example.
Finally, section 5 concludes the paper.

2. MATHEMATICAL PRELIMINARIES

The notations employed in this paper are relatively
straightforward. R≥0 denotes the set [0,∞). ‖ · ‖ denotes
the Euclidean vector norm on R

n, 〈·〉 the inner product,
and Bn

ǫ the closed ball of radius ǫ in R
n centered at

origin. P accounts for the set of polynomial functions
p : Rn → R and Psos ⊂ P is the subset of polynomials
with an SOS decomposition; i.e, p ∈ Psos if and only
if there are pi ∈ P, i ∈ {1, . . . , k} such that p = p2i +
· · ·+p2k. In this study, we consider a class of n-dimensional
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Fig. 1. The trajectories of a switched system. Notice that
the motion follows either DI (1) or (2).

nonlinear switched systems S = {G,X , I,F} wherein G
is compact and defines the state-space, X = {Xi}i∈I is
the set containing (closed) partitions of G with index set
I = {1, 2, 3, ..., N}, and F = {Fi}i∈I a family of smooth
functions (Fi : Ui → R

n with Ui an open neighborhood
of Xi). Note that G =

⋃

i∈I Xi, Xi = int(Xi) ∪ bdXi,
int(Xi) 6= ∅ for all Xi ∈ X , and Xi ∩Xj ⊂ bdXi ∪ bdXj .

Also, denote Ĩ = {(i, j) ∈ I×I | Xi∩Xj 6= ∅, i 6= j} the set
of index pairs which determines the partitions with non-
empty intersections. Besides, each point of G has an open
neighborhood intersecting only finitely many elements of
X (local finiteness). We also posit that for any x ∈ bdXi

and v ∈ R
n there is a > 0 and j such that x+ vt ∈ Xj for

all t ∈ [0, a) (characterization of a nice partitioning of the
state space). Remark that partitioning by polyhedral sets
assures that this latter property is satisfied. This is the case
when considering switched systems defined on polyhedral
sets, e.g. piecewise linear systems.

The global dynamics is described by the following differ-
ential inclusions

ẋ(t) ∈ F(x(t)) (1)

ẋ(t) ∈ Fc(x(t)) (2)

where the set-valued maps F and Fc are defined by

F : G→ 2G;x 7→ {v ∈ R
n | v = Fi(x) if x ∈ Xi} (3)

Fc : G→ 2G;x 7→ co(F(x)) (4)

where 2G denotes the power set of G, and the notation
co(·) signifies the convex hull. The choice of whether the
dynamics is modeled by (1) or (2) depends on the nature
of the motion to be considered (see Fig. 1). Pertaining
to the solutions of discontinuous and switched dynamical
systems, the interested reader is referred to the didactic
review in (Cortes [1998]).

In the sequel, we apply the following notions. For Q ⊂ R
n,

TQ(x) denotes the Bouligand’s contingent cone of Q at
x ∈ Q. If Q is convex then TQ(x) is closure of the cone
spanned by Q− {x}. In addition, if x is in the interior of

Q, we have TQ(x) = R
n (Aubin and Cellina [1984]). The

upper contingent derivative of a function U : Rn → R at
x0 in the direction v0 is defined as

D+U(x0)(v0) = lim
l→0+
v→v0

inf
(U(x+ lv)− U(x)

l

)

(5)

Note in particular that, if U(x) is Gâteaux differentiable
then it holds that

D+U(x0)(v0) = 〈
∂U

∂x
, v〉 (6)

where ∂U
∂x

denotes the column vector with first-order
partial derivatives of U(x).

Proposition 1. The set-valued map defined by (3) is upper
semi-continuous; i.e., for any x ∈ G and any ǫ > 0 there
exists a σ(ǫ, x) ≤ ǫ such that ∀x́ ∈ x+Bn

σ , F(x́) ⊂ F(x)+
Bn
ǫ . Correspondingly, F

c defined by (4) is an upper semi-
continuous set valued map with non-empty, convex and
compact values.

Proof. For all x ∈ int(Xi), i ∈ I, F(x) = Fi(x)
is a one point set and since each Fi is continuous, F
is upper semi-continuous at any x ∈ int(Xi). Further-
more, for any x ∈ bdXi ∪ bdXi+1 ∪ · · · ∪ bdXj , F(x) =
{Fi(x), Fi+1(x), . . . , Fj(x)} is a multi-valued set. Because
each Fi is continuous, it follows that for all x ∈ Xi

and ǫ > 0 there exists a σi > 0 such that ∀x́ ∈ x +
Bn
σi
, Fi(x́) ∈ Fi(x) + Bn

ǫ . To demonstrate that F is upper
semi-continuous, it suffices to choose σ = mini σi. Addi-
tionally, because each of the maps Fi, i ∈ I, is continuous
and F(x) is finite for all x ∈ G (finiteness of F follows
from partitioning with local finiteness property); then,
from Lemma 16 in (p. 66, Filippov [1988]), it follows that
Fc is also upper semi-continuous.

It is also worth noting that F cannot be lower semi-
continuous at any point x ∈ Xi ∩ Xj , (i, j) ∈ Ĩ, on a
boundary, since F is not a one point set. For T > 0,
let ST denote either [0, T ) or [0, T ]. By a Carathéodory
solution of DI (1) at ζ0 ∈ G, we understand an absolutely
continuous function ST → G; t 7→ ζ(t) which solves the
following Cauchy problem

ζ̇(t) ∈ F(ζ(t)) a.e., ζ(0) = ζ0 (7)

A Filippov solution to DI (1) at ζ0 ∈ G is a solution to (7)
with F supplanted by Fc (Filippov [1988]).

We recall the following facts from the theory of differential
inclusions. Let W be some non-negative function defined
on Graph(F) =

⋃

x∈G{x}×G ⊂ G×G. We shall say that
a function Φ : G → R≥0 is a Lyapunov function for F
with respect to W if for all x ∈ G and some v ∈ F(x) the
following ”Lyapunov property” holds

D+Φ(x)(v) +W (x, v) ≤ 0 (8)

The following proposition which is derived from Corollary
1 and 2 in (p. 292, Aubin and Cellina [1984]) illustrates
that, in fact, the existence of an equilibrium can be inferred
from the Lyapunov property.

Proposition 2. If there exist a continuous non-negative
function Φ : G → R≥0 and a positive definite function
W : Graph(Fc) → R>0 satisfying (8) for all x ∈ G and
some v ∈ Fc(x), then there exists an equilibrium x∗ ∈ G
for Fc.

Indeed, if the conditions of Proposition 2 hold, then
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∀x ∈ G, Fc(x) ∩ TG(x) 6= ∅ (9)

Furthermore, if F c(G) is bounded, from Theorem 1 in (p.
180, Aubin and Cellina [1984]), it follows that at any point
x0 ∈ G, there exists a Filippov solution of (1) defined on
S∞ which remains in G (viability).

Now, we are ready to assert a stability condition for the
set valued map Fc which is a direct result of applying
Theorem 8.4 in (p. 176, Smirnov [2002]).

Proposition 3. Suppose 0 ∈ Fc(0). If there exist ǫ > 0 and
continuous positive definite functions V : Rn → R≥0 and
W : Rn → R≥0 such that for each x ∈ Bn

ǫ

D+V (x)(v) +W (x) ≤ 0 for all v ∈ Fc(x) (10)

Then the equilibrium point 0 is asymptotically stable.

Recall that if there exists an SOS decomposition for p(x),
then it follows that p(x) is non-negative. Unfortunately,
the converse does not hold in general; that is, there
exist non-negative polynomials which do not have an SOS
decomposition. An epitome of this class of non-negative
polynomials is the Motzkin’s polynomial (Motzkin [1965])
given by

p(x) = 1− 3x21x
2
2 + x21x

4
2 + x41x

2
2 (11)

which is non-negative for all x ∈ R
2. This imposes, more

or less, some sort of conservatism when utilizing SOS
based methods. The next proposition gives an interesting
formulation to the SOS decomposition problem.

Proposition 4. (Choi et al. [1995]). A polynomial p(x) of
degree 2d belongs to Psos if and only if there exist
a positive semi-definite matrix Q (known as the Gram
matrix) and a vector of monomials Z(x) which contains
all monomial of x of degree ≤ d such that p(x) =
ZT (x)QZ(x).

Chesi et al. [1999] evinced that testing whether a polyno-
mial is SOS can be formulated as a set of LMI feasibility
tests. Subsequently, Parrilo [2003] demonstrated that the
answer to the query that whether a given polynomial
p(x) is SOS or not can be investigated via semi-definite
programming methodologies.

Proposition 5. (Parrilo [2003]). Given a finite set {pi}
m
i=0 ∈

P, the existence of a set of scalars {ai}
m
i=1 ∈ R such that

p0 +

m
∑

i=1

aipi ∈ Psos (12)

is an LMI feasibility problem.

The subsequent proposition formalizes the problem of con-
strained positivity of polynomials which is a direct result
of applying Positivstellensatz method (Stengle [1994]).

Proposition 6. (Chesi [2010]). Let {ai}
k
i=1 and {bi}

l
i=1 be-

long to P, then

p(x) ≥ 0 ∀x ∈ R
n : ai(x) = 0, ∀i = 1, 2, ..., k

and bj(x) ≥ 0, ∀j = 1, 2, ..., l (13)

is satisfied, if the following holds

∃r1, r2, . . . , rk ∈ P and ∃s0, s1, . . . , sl ∈ Psos

p =

k
∑

i=1

riai +

l
∑

i=1

sibi + s0 (14)

Proposition 7. The multivariable polynomial p(x) is strictly
positive (p(x) > 0 ∀x ∈ R

n), if there exists a λ > 0 such
that

(

p(x)− λ
)

∈ Psos (15)

At this point, we are prepared to delineate the main
contributions of this paper.

3. MAIN RESULTS

In this section, we will incorporate the mathematical
notions given in the previous section to derive asymptotic
stability conditions for the class of nonlinear switched
systems with Fillipov solutions defined on regular sets.
Then, we present a theorem for robust asymptotic stability
of switched systems with polytopic uncertainty. Finally, we
bring forward sufficient conditions for stability using SOS
techniques.

3.1 Asymptotic Stability Conditions for Switched Systems

Consider the switched system S and let (2) describe the
Filippov solutions of S. It is assumed that 0 is an interior
point of G, and that it is located on some boundary of
partitions. Note that 0 ∈ Fc(0), hence 0 is an equilibrium.
Denote by {Vi(x)}i∈I a family of positive definite and
continuously differentiable (C1) functions (Vi : Xi → R≥0).
We define a set valued map Ψ(x) as

Ψ : G→ 2R;x 7→ {z ∈ R | z = Vi(x) if x ∈ Xi} (16)

Obviously, Ψ(x) can be considered as a switched system
type of a candidate Lyapunov function.

Proposition 8. If Vi(x) = Vj(x) for all x ∈ Xi ∩Xj and all

(i, j) ∈ Ĩ, then Ψ(·) is real single-valued (Ψ : G→ R) and
locally Lipschitzean.

Notice that, Proposition 8 does not impose any restrain on
the structure of {Vi(x)}i∈I , e.g. homogenous or quadratic
forms as was done in Leth and Wisniewski [2012]. This
considerably mitigates the conservatism in finding the
family of Lyapunov functions {Vi(x)}i∈I .

Proposition 9. Suppose

I)
〈

∂Vi(x)
∂x

, Fi(x)
〉

< 0 for all x ∈ Xi \ {0} and all i ∈ I,

II)
〈

∂Vi(x)
∂x

, Fj(x)
〉

< 0 for all x ∈ Xi ∩Xj \ {0} and all

(i, j) ∈ Ĩ.

Then there exists a continuous positive definite function
W : Rn → R≥0 such that

III)
〈

∂Vi(x)
∂x

, Fi(x)
〉

< −W (x) for all x ∈ Xi \ {0} and
all i ∈ I,

IV)
〈

∂Vi(x)
∂x

, Fj(x)
〉

< −W (x) for all x ∈ Xi ∩ Xj \ {0}

and all (i, j) ∈ Ĩ.

Proof. Suppose for each Xi, with i ∈ I, there exist an
open neighborhood Ti of Xi such that condition (I) holds
due to the compactness of Xi. Then, the collection of such
open neighborhoods {Ti}i∈I is an open cover of G such
that G ⊆

⋃

i∈I Ti. Therefore, there exists a partition of
unity subordinate to the cover {Ti}i∈I ; i.e, a family of
continuous functions

{

ψi : G→ [0, 1]
}

i∈I
with supp(ψi) ⊂

Ti such that for any point x ∈ G, there is a neighborhood
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of x where all but finite number of functions {ψi}i∈I are
equal to 0, and such that

∑

i∈I ψi(x) = 1. Thus, let

W1(x) = −
∑

i∈I ψi(x)〈
∂Vi(x)

∂x
, Fi(x)〉 which satisfies (III).

In a similar manner, for all Yl = Xi∩Xj with (i, j) ∈ Ĩ and
l ∈ L = {1, 2, ...,M} (where M is the number of members

in Ĩ), there exist open neighborhoods Yl whose collection
({Yl}l∈L) is an open cover to the closed set G′ ⊂ G.
Because G′ is a closed subset of G, G′ is also compact. So,
there exists a partition of unity subordinate to the cover
{Yl}l∈L characterized by

{

φl : Yl → [0, 1]
}

l∈L
. At this

point, it suffices to let W2(x) = −
∑

l∈L φl(x)Γl(x) where

Γl(x) = 〈∂Vi(x)
∂x

, Fj(x)〉 if x ∈ Yl, l ∈ L. Obviously, W2(x)
satisfies (IV). Finally, we can select the map W (x) =
max{W1(x),W2(x)}, and this completes the proof.

The next proposition provides a Lyapunov-like stability
theorem for the class of switched systems under study.

Proposition 10. Let {Vi(x)}i∈I be a family of C1 Lyapunov
functions. The switched system S is asymptotically stable
at the origin if the following conditions hold

Vi(x) > 0 ∀x ∈ Xi \ {0} (17)

〈∂Vi(x)

∂x
, Fi(x)

〉

< 0 ∀x ∈ Xi \ {0} (18)

for all i ∈ I,
〈∂Vi(x)

∂x
, Fj(x)

〉

< 0 ∀x ∈ Xi ∩Xj \ {0} (19)

Vi(x) = Vj(x) ∀x ∈ Xi ∩Xj \ {0} (20)

for all (i, j) ∈ Ĩ

Proof. The proof follows the same lines of Proposition 10
in (Leth and Wisniewski [2012]). It is necessary to show
that Proposition 9 holds. From (16),(17),(20), and Propo-
sition 8, we conclude that there exists a continuous, locally
Lipschitzean, single-valued, and positive definite function
Ψ(x). Subsequently, from (18),(19) and Proposition 9 it
follows that there exists a positive definite function W (x)
satisfying III and IV.
Given a set of C1 functions {Vi(x)}i∈I and from the
definition of partitioning, it follows that for any x ∈ G
and v ∈ R

n, there is a > 0 such that x + at ∈ Xj

for any t ∈ [0, a). On the other hand, D+Vj(x)(v) =

lim infh→0+
Vj(x+hv)−Vj(x)

h
= 〈∂Vj

∂x
(x), v〉 . Then, from

Proposition 9 and (18) it follows that

D+Vi(x)
(

Fi(x)
)

+W (x) ≤ 0

Consequently, for any u ∈ Fc(x) and real αk such that
∑

k∈I αk = 1 , we arrive at the following justification

D+Ψ(x)(u) =D+Vi(x)(u)

=D+Vi(x)
(

∑

k∈I

αkFk(x)
)

=

〈

∂Vi

∂x
,
(

∑

k∈I

αkFk(x)
)

〉

=
∑

k∈I

αk

〈∂Vi

∂x
, Fk(x)

〉

≤−
∑

k∈I

αkW (x)

≤−W (x)

in which, we applied (19), condition IV and Proposition 9.
Thus, 0 is an asymptotically stable equilibrium.

3.2 Robust Asymptotic Stability of Switched Systems with
Polytopic Uncertainty

At this stage, we extend our results to a class of switched
systems with polytopic uncertainty S̃ = {G,X , I, F̃} with

F̃ = {Fi(x, θ
i)}i∈I and

Fi(x, θ
i) =

Li
∑

l=1

θilfil(x) (21)

where, fil : Ui → R
n, l = 1, 2, ..., Li (Ui is an open

neighborhood of Xi) are a family of smooth functions,
and θi, i ∈ I are uncertain constant parameter vectors
(θi = [θi1, θi2, ..., θiLi

]T ∈ R
Li) satisfying

θi ∈ Θi ,

{

θi ∈ R
Li | θil ≥ 0, l = 1, 2, .., Li,

and

Li
∑

l=1

θil = 1

}

(22)

With the results given in Section 3.1, the following stability
theorem for uncertain switched systems with Filippov
solutions can be characterized.

Proposition 11. Consider the switched system subject to
polytopic uncertainty S̃. If there exists a family of Lya-
punov functions {Vi(x)}i∈I satisfying

Vi(x) > 0 ∀x ∈ Xi \ {0} (23)
〈∂Vi(x)

∂x
, fil(x)

〉

< 0 ∀x ∈ Xi \ {0} (24)

for all i ∈ I and l = 1, 2, ..., Li,
〈∂Vi(x)

∂x
, fjl(x)

〉

< 0 ∀x ∈ Xi ∩Xj \ {0} (25)

Vi(x) = Vj(x) ∀x ∈ Xi ∩Xj \ {0} (26)

for all (i, j) ∈ Ĩ, and l = 1, 2, ..., Lj . Then, the equilibrium
point 0 is robustly asymptotically stable.

Proof. This is a direct result of utilizing Proposition 10.
(23) and (26) correspond to (17) and (20), respectively. If
(24) holds for all i ∈ I and l = 1, 2, ..., Li, then it follows
that for all sets of unknown parameters θi satisfying (22)

Li
∑

l=1

θil
〈∂Vi(x)

∂x
, fil(x)

〉

=
〈∂Vi(x)

∂x
,

Li
∑

l=1

θilfil(x)
〉

=
〈∂Vi(x)

∂x
, Fi(x, θ

i)
〉

< 0 (27)

which proves that (18) holds. It can be analogously shown

that if (25) holds for all (i, j) ∈ Ĩ, and l = 1, 2, ..., Lj ,

then it follows that (19) is satisfied for all (i, j) ∈ Ĩ.
Consequently, by Proposition 10, all Filippov solutions of
S̃ converge to origin asymptotically.

3.3 Sufficient Conditions Based on SOS Decomposition

Henceforth, we focus on a family of polynomial Lyapunov
functions. Moreover, we postulate that each Fi, i ∈ I, (cor-
respondingly, fil, i ∈ I, l = 1, 2, ..., Li) is a vector of poly-
nomials in x. The reader should note that Propositions 10
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and 11 presents stability conditions for general nonlin-
ear switched systems; nonetheless, the above assumptions
on the structure of Lyapunov functions and subsystems
should be made so that providing a computational efficient
method for stability analysis becomes doable. In order to
achieve this goal, we need computational efficient methods
to check the positivity of a given polynomial over a specific
set. The positivity test can be performed using two main
approaches; i.e., the slack variable approach and the SOS
approach. The former method has been characterized for
positivity analysis of polynomials over hyper-rectangles
(Sato [2009]); however, this scheme lacks a computational
efficient algorithm. On the other hand, currently there are
well-developed computational tools for SOS decomposition
e.g. SOSTOOLS (Pranja et al. [2004]).
Let the set

{

x ∈ G | ξik(x) ≥ 0 for k = 1, 2, . . . , nXi

}

(28)

represent the partition Xi, where ξik ∈ P and nXi

denotes the number of polynomial inequalities required
to completely characterize Xi. The boundary between the
partitions is defined as

Xi ∩Xj = {x ∈ G | γij(x) = 0} (29)

where γij(x) ∈ P, with (i, j) ∈ Ĩ.
Condition (18) can be guaranteed if there exist polynomial
functions pij(x) ∈ P such that

Vi(x) + pij(x)γij(x) = Vj(x) for all (i, j) ∈ Ĩ (30)

Using the generalized S-procedure (Pólic and Terlaky
[2007]), the above discussions, and Proposition 7, it follows
that (17) and (18) are satisfied if the following SOS
problem is feasible

Vi(x)−

nXi
∑

i=1

qik(x)ξik(x)− λi ∈ Psos (31)

−
〈∂Vi(x)

∂x
, Fi(x)

〉

−

nXi
∑

i=1

wik(x)ξik(x)− µi ∈ Psos (32)

for some SOS polynomials ξik(x), wik(x) and positive
scalars µi, λi.
Condition (19) can also be reformulated using Proposi-
tion 6 as (see (14) wherein bi = 0, ri(x) = r(x) ∈ P,

p = −
〈

∂Vi(x)
∂x

, Fi(x)
〉

, and noting that s0 ∈ Psos)

−
〈∂Vi(x)

∂x
, Fj(x)

〉

− r(x)γij(x)− νij ∈ Psos (33)

Thus far, we have found SOS representations for all
conditions in Proposition 10. The following proposition
summarizes the above discussions.

Proposition 12. Consider the nonlinear switched system
S. If there exist a family of polynomials {Vi(x)}i∈I with

Vi(0) = 0 if 0 ∈ Xi, rij ∈ P, pij ∈ P with (i, j) ∈ Ĩ,
qik ∈ Psos, wik ∈ Psos with k = 1, 2, . . . , nXi

, and a set of

positive scalars λi, µi with i ∈ I, and νij with (i, j) ∈ Ĩ,
such that

Vi(x)−

nXi
∑

i=1

qik(x)ξik(x)− λi ∈ Psos (34)

−
〈∂Vi(x)

∂x
, Fi(x)

〉

−

nXi
∑

i=1

wik(x)ξik(x)− µi ∈ Psos (35)

for all i ∈ I, and

−
〈∂Vi(x)

∂x
, Fj(x)

〉

− rij(x)γij(x)− νij ∈ Psos (36)

Vi(x) + pij(x)γij(x) = Vj(x) (37)

for all (i, j) ∈ Ĩ. Then, the equilibrium 0 is asymptotically
stable.

It is worth noting that condition (36) can be further
relaxed by just considering those boundaries possessing
attractive Filippov solutions (instead of checking (36) for

all (i, j) ∈ Ĩ). One can infer the existence of an attractive
Filippov solution by checking

〈∂γij(x)

∂x
, Fi(x)

〉〈∂γij(x)

∂x
, Fj(x)

〉

< 0 ∀x ∈ Xi ∩Xj

(38)
or, in terms of an SOS decomposition problem, if the
following holds

−
〈∂γij(x)

∂x
, Fi(x)

〉〈∂γij(x)

∂x
, Fj(x)

〉

−l(x)γij(x)−κij ∈ Psos

(39)
for some l(x) ∈ P and some positive scalar κij .

It should be noted that Proposition 12 only provides suffi-
cient conditions. Indeed, given a nonlinear switched system
S, one can search for the corresponding candidate Lya-
punov functions via semi-definite programming schemes;
if the problem is feasible, then the switched system S is
asymptotically stable.

Based on similar arguments for Proposition 12, we can
characterize an SOS representation for conditions in
Proposition 11.

Proposition 13. Consider the uncertain switched system
S̃. If there exist a family of polynomials {Vi(x)}i∈I with

Vi(0) = 0 if 0 ∈ Xi, rij ∈ P , pij ∈ P with (i, j) ∈ Ĩ,
qik ∈ Psos, wik ∈ Psos with k = 1, 2, . . . , nXi

, and a set of
positive scalars λil, µil with i ∈ I (l = 1, 2, ..., Li), and νijl
with (i, j) ∈ Ĩ (l = 1, 2, ..., Lj), such that

Vi(x)−

nXi
∑

i=1

qik(x)ξik(x)− λil ∈ Psos (40)

−
〈∂Vi(x)

∂x
, fil(x)

〉

−

nXi
∑

i=1

wik(x)ξik(x)− µil ∈ Psos (41)

holds for all for all i ∈ I and l = 1, 2, ..., Li,

−
〈∂Vi(x)

∂x
, fjl(x)

〉

− rij(x)γij(x)− νijl ∈ Psos (42)

and (37) holds for all for all (i, j) ∈ Ĩ and l = 1, 2, ..., Lj .
Then, the origin is robustly asymptotically stable.

4. SIMULATION EXAMPLE

Consider the following switched system described by

ẋ ∈ G(x) (43)

ẋ ∈ Gc(x) (44)

with G : R2 → 2R
2

;x 7→ {v ∈ R
2 | v = gi(x) if x ∈ Xi}

(Gc = co(G)), wherein i ∈ I = {1, 2}, the partitions defined
as

X1 = {x ∈ R
2 | x22 − x31 > 0} (45)

X2 = {x ∈ R
2 | x22 − x31 < 0} (46)
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Fig. 2. Trajectories of the example switched system. Note
that there exists an attractive Filippov solution.

and the subsystems given by

g1(x) =

[

−2x1 − x31 − 5x2 − x32
6x1 + x31 − 3x2 − x32

]

(47)

g2(x) =

[

x2 + x21 − x31
4x1 + 2x2

]

(48)

It is worth noting that although subsystem g1(x) is asymp-
totically stable at the origin, g2(x) is unstable; therefore,
a unified Lyapunov function may not exist. However, the
simulations show that the overall switched system is stable
at the origin (see Fig. 2). The stability of the above system
can be verified using the results obtained in Proposition 12.
Using SOSTOOLS v. 2.03, two candidate Lyapunov func-
tions of degree six were found

V1(x) = 24.445x61 − 9.763x14 + 1.948x31x
2
2

+3.203x42 + 1.008x62 (49)

V2(x) = V1(x) + x22 − x31 (50)

This is consistent with the results presented in this paper.
We remark that for polynomials of lesser degree say 4 the
search for a candidate Lyapunov function was infeasible.
Note that (50) ensures that condition (37) is satisfied.
In this simulation, the corresponding values for scalars
{λi}i∈I , {µi}i∈I , and {νij}(i,j)∈Ĩ were set to 0.1. The SOS

polynomials {wi1}i∈I and {ξi1}i∈I were set to (x22 − x31)
2.

5. CONCLUSION

In this paper, a Lyapunov-like stability theorem for non-
linear switched systems with partitioned state-space and
state-dependent switching is brought forward. This re-
sult has been exploited to formulate conditions on robust
asymptotic stability of switched systems with polytopic
uncertainty. Since the analysis is based on the theory of dif-
ferential inclusions, the proposed stability analysis scheme
includes Filippov solutions. Furthermore, in order to pro-
vide a computationally efficient method to implement the
suggested stability theorem, the results are reformulated
using SOS decomposition techniques which can be realized
based on semi-definite programming tools.
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