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Abstract— This paper addresses the robust stability and
control problem of uncertain piecewise linear switched systems
where, instead of the conventional Carathéodory solutions, we
allow for Filippov solutions. In other words, in contrast to
the previous studies, solutions with infinite switching in finite
time along the facets and on faces of arbitrary dimensions
are also taken into account. Firstly, based on earlier results,
the stability problem of piecewise linear systems with Filippov
solutions is translated into a number of linear matrix inequality
feasibility tests. Subsequently, a set of matrix inequalities are
brought forward, which determines the asymptotic stability of
the Filippov solutions of a given uncertain piecewise linear
system. Afterwards, bilinear matrix inequality conditions for
synthesizing a robust controller with a guaranteed H∞ per-
formance are formulated. Finally, a V-K iteration algorithm
is proposed to surmount the aforementioned matrix inequality
conditions.

I. INTRODUCTION

Piecewise linear (PWL) systems are an important class of
hybrid systems, which has received tremendous attention in
open literature [1]-[10]. By a PWL system, we understand a
family of linear systems defined on polyhedral sets such that
the dynamics inside a polytope is governed by a linear dy-
namic equation. The union of these polyhedral sets forms the
state-space. We say that a ”switch” has occurred whenever
the trajectories passes to an adjacent polytope.

The stability analysis of PWL systems is a complicated
assignment. It is well known that even if all the subsystems
are stable, the overall system may possess divergent tra-
jectories [10]. Furthermore, the behavior of solutions along
the boundary of polytopes (facets) may engender unstable
trajectories where transitions are, generally speaking, multi-
valued. That is, a PWL system with stable Carathéodory
solution may possess divergent Filippov solutions such that
the overall system is unstable (see Example 5 in [7]). Hence,
the stability of the Carathédory solutions does not imply the
stability of the overall PWL system.

The stability problem of PWL systems has been ad-
dressed by a number of researchers [3]-[7]. An efficacious
contribution was made by Johansson and Rantzer in [3].
The authors proposed a number of LMI feasibility tests to
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investigate the exponential stability of a given PWL system
by introducing the concept of piecewise quadratic Lyapunov
functions. Following the same trend, Chan et al. [5] extended
the results to the case of uncertain PWL systems. The authors
also brought forward a H∞ controller synthesis scheme for
uncertain PWL systems based on a set of LMI conditions.

However, the solutions considered implicitly in both con-
tributions are defined in the sense of Carathéodory. This
means that a solution of a PWL system is the concatenation
of classical solutions on the facets of polyhedral sets. In
other words, sliding phenomena or solutions with infinite
switching in finite time are inevitably eliminated from the
analyses. In this study, in lieu of the Carathéodory solutions,
the more universal Filippov solutions [11] are considered.
Our approach has its roots in [7], wherein the authors
applied the theory of differential inclusions to derive stability
theorems for switched systems with Filippov solutions. The
results reported in this paper are formulized as a set of LMI
or bilinear matrix inequality (BMI) conditions which can be
formulated into a semi-definite programming problem.

The framework of this paper is organized as follows.
The subsequent section discusses the robust stability results.
In Section III, a stabilizing state-feedback controller for
uncertain PWL systems is formulated. The H∞ Controller
synthesis methodology and a V-K iteration algorithm to deal
with the BMI conditions are described in Section IV. The
accuracy of the proposed method is evaluated by a simulation
example in Section V. The paper ends with conclusions in
Section VI.

II. ROBUST STABILITY ANALYSIS

A. PWL Systems with Filippov Solutions

We will study a class of PWL systems with Filippov
solutions S = {X ,U ,V, X, I, F,G}, where X ⊆ Rn is a
polyhedral set representing the state space, X = {Xi}i∈I
is the set containing the polytopes in X with index set
I = {1, 2, . . . , nX} (note that

⋃
i∈I Xi = X ). Each polytope

Xi is characterized by the set {x ∈ X | Eix < 0} where the
notation < signifies the component-wise inequality. U is the
control space and V is the disturbance space, which are both
subsets of Euclidean spaces. In addition, v ∈ L2[0,∞). F =
{fi}i∈I and G = {gi}i∈I are families of linear functions
associated with the system states x and outputs y. Each fi
consists of six elements (Ai, Bi, Di; ∆Ai,∆Bi,∆Di) and
each gi is composed of four elements (Ci, Gi; ∆Ci,∆Gi).
Furthermore, fi : Yi × U × V → Rn; (x, u, v) 7→

{
z ∈ Rn |
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z = (Ai + ∆Ai)x + (Bi + ∆Bi)u + (Di + ∆Di)v
}

and
gi : Yi×U → Rm; (x, u) 7→

{
z ∈ Rm | z = (Ci + ∆Ci)x+

(Gi + ∆Gi)u
}

where Yi is an open neighborhood of Xi.
The set of matrices (Ai, Bi, Ci, Di, Gi) are defined over the
polytope Xi and (∆Ai,∆Bi,∆Ci,∆Di,∆Gi) encompass
the corresponding uncertainty terms. The dynamics of the
system can be described by

ẋ(t) ∈ co

(
F
(
x(t), u(t), v(t)

))
(1)

y(t) ∈ G
(
x(t), u(t)

)
(2)

where, co(·) denotes the convex hull, the set valued maps F
and G are defined as

F : X × U × V → 2X

; (x, u, v) 7→ {z ∈ Rn | z = fi(x, u, v) if x ∈ Xi}
(3)

G : X × U → 2R
m

; (x, u) 7→ {z ∈ Rm | z = gi(x, u) if x ∈ Xi} (4)

where the notation 2A means the power set or the set of all
subsets of A. Denote by Ĩ = {(i, j) ∈ I2 | Xi∩Xj 6= ∅, i 6=
j} the set of index pairs which determines the polytopes with
non-empty intersections. We now assume that each polytope
is the intersection of a finite set of supporting half spaces.
By Nij denote the normal vector pertained to the hyperplane
supporting both Xi and Xj . Consequently, each boundary
can be characterized as

Xi∩Xj = {x ∈ X | NT
ijx ≈ 0, Hijx < 0, (i, j) ∈ Ĩ} (5)

where ≈ represent the component-wise equality and the
inequality Hijx < 0 confines the hyperplane to the interested
region. Throughout the paper, the matrix inequalities should
be understood in the sense of positive definiteness; i.e.,
A > B (A ≥ B) means A − B is positive definite (semi-
definite). In case of matrix inequalities, I denotes the unity
matrix (the size of I can be inferred from the context) and
should be distinguished from the index set I . In matrices, ?
in place of a matrix entry amn means that amn = aTnm.

A Filippov solution to (1) is an absolutely continuous
function [0, T ) → X ; t 7→ φ(t) (T > 0) which solves the
following Cauchy problem

φ̇(t) ∈ co
(
F
(
φ(t), u(t), v(t)

))
a.e., φ(0) = φ0 (6)

In the sequel, we assume that at any interior point x ∈ X
there exists a Filippov solution to system (1). This can be
evidenced by Proposition 5 in [7]. For more information
pertaining to the solutions and their existence or uniqueness
properties, the interested reader is referred to the expository
review [12] and the book [11].

In [7], Leth and Wisniewski proposed a stability theorem
for switched systems with Filippov solutions which is refor-
mulated for PWL systems in the next proposition.

Proposition 2.1: Consider the following autonomous
PWL system

ẋ ∈ co
(
F(x)

)
(7)

with ∆Ai ≈ 0. If there exists quadratic forms Φi(x) =
xTQix, Ψi(x) = xT (ATi Qi + QiAi)x and Ψij(x) =
xT (ATj Qi +QiAj)x satisfying

Φi(x) > 0 for all x ∈ Xi \ {0} (8)
Ψi(x) < 0 for all x ∈ Xi \ {0} (9)

for all i ∈ I , and

Ψij(x) < 0 for all x ∈ Xi ∩Xj \ {0} (10)

Φi(x) = Φj(x) for all x ∈ Xi ∩Xj (11)

for all (i, j) ∈ Ĩ . Then, the the equilibrium point 0 of (7) is
asymptotically stable.

Remark 2.1: The inclusions x ∈ Xi\{0} and x ∈ Xi∩Xj

are analogous to {x ∈ X | Eix � 0} and (5), respectively.
It is worth noting that Conditions (8)-(9) are concerned with
the positivity of a quadratic form over a polytope; whereas,
(10) is about positivity over a hyperplane. Condition (11)
asserts that the candidate Lyapunov functions should be con-
tinuous (along the facets). A well known LMI formulation
of conditions (8), (9) and (11) was proposed in [3] which is
described next. Let us construct a set of matrices Fi, i ∈ I
such that Fix = Fjx for all x ∈ Xi ∩ Xj and (i, j) ∈ Ĩ .
Then, it follows that the piecewise linear candidate Lyapunov
functions can be formulated as

V (x) = xTFTi MFix = xTQix if x ∈ Xi (12)

where, the free parameters of Lyapunov functions are con-
centrated in the symmetric matrix M . In the following
proposition we generalize the results proposed by Johansson
and Rantzer [3] to PWL systems with the more general
Filippov solutions.

Proposition 2.2: Consider the PWL system (7) with Fil-
lipov solutions, and the family of piecewise quadratic Lya-
punov functions Vi(x) = xTQix = xTFTi MFix, i ∈ I .
If there exist a set of symmetric matrices Qi, three sets of
symmetric matrices Ui, Si, Tij with non-negative entries,
and matrices Wij of appropriate dimensions with i ∈ I and
(i, j) ∈ Ĩ , such that the following LMI problem is feasible

Qi − ETi SiEi > 0 (13)

ATi Qi +QiAi + ETi UiEi < 0 (14)

for all i ∈ I , and

ATj Qi +QiAj +WijN
T
ij +NijW

T
ij +HT

ijTijHij < 0 (15)

for all (i, j) ∈ Ĩ . Then, the equilibrium point 0 of (7) is
asymptotically stable.

Proof: Matrix inequalities (13) and (14) are the same
as Equation (11) in Theorem 1 in [3] which satisfy (8)-(9).
The continuity of the Lyapunov functions is also ensured
from the assumption that Vi(x) = xTQix = xTFTi MFix ,
i ∈ I since Fix = Fjx, for all x ∈ Xi ∩Xj and (i, j) ∈ Ĩ .
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(10) is equivalent to xT (ATj Qi + QiAj)x < 0 for {x ∈
X | NT

ijx ≈ 0, Hijx � 0}. Applying the S-procedure and
Finsler’s lemma [13], we obtain (15) for a set of matrices
Tij , (i, j) ∈ Ĩ with non-negative entries and Wij , (i, j) ∈ Ĩ
with appropriate dimensions.
We remark that algorithms for constructing matrices Ei and
Fi, i ∈ I , are described in [8].

Remark 2.2: A similar LMI formulation to (11) can be
found in [8]; whereas, our analysis, in this paper, is estab-
lished upon the stability theorem delineated in Proposition
10 in [7] which considered the Filippov Solutions.

B. Uncertain PWL Systems with Filippov Solutions

Henceforth, we will focus on the family of uncertain
PWL systems given by (1). In order to derive the stability
and control results, we assume that the upper bound of
uncertainties are known apriori; i.e.,

∆Ai
T∆Ai ≤ ATi Ai

∆Bi
T∆Bi ≤ BTi Bi

∆Ci
T∆Ci ≤ CTi Ci

∆Di
T∆Di ≤ DTi Di

∆Gi
T∆Gi ≤ GTi Gi (16)

in which, (Ai,Bi, Ci,Di,Gi) are any set of constant matrices
with the same dimension as (Ai, Bi, Ci, Di, Gi) satisfying
(16).

Proposition 2.3: Consider the uncertain PWL system (7).
If there exist small positive constants εi, i ∈ I , εij , (i, j) ∈
Ĩ , a set of symmetric matrices Qi, i ∈ I , three sets of
symmetric matrices Ui, Si, i ∈ I , Tij , (i, j) ∈ Ĩ , with non-
negative entries, and matrices Wij , (i, j) ∈ Ĩ , of appropriate
dimensions, such that

Qi − ETi SiEi > 0 (17)[
Ξi Qi
? −εiI

]
< 0 (18)

for all i ∈ I , and [
Ξij Qi
? −εijI

]
< 0 (19)

for all (i, j) ∈ Ĩ , where Ξi = ATi Qi + QiAi + ETi UiEi +
εiATi Ai and Ξij = ATj Qi + QiAj + WijN

T
ij + NijW

T
ij +

HT
ijTijHij + εijATj Aj . Then, every Filippov solution of the

autonomous uncertain system (7) converges to the origin
asymptotically.

Proof: Condition (17) is equivalent to (13). We need to
show that (18) and (19) correspond to (14) and (15), respec-
tively. Substituting the uncertain vector Āi = Ai + ∆Ai in
(15) yields (Aj + ∆Aj)

TQi +Qi(Aj + ∆Aj) +WijN
T
ij +

NijW
T
ij + HT

ijTijHij < 0 which with little manipulation
leads to ATj Qi +QiAj +WijN

T
ij +NijW

T
ij +HT

ijTijHij +
∆ATj Qi +Qi∆Aj ≤ ATj Qi +QiAj +WijN

T
ij +NijW

T
ij +

HT
ijTijHij + 1

εij
QiQi + εijATj Aj . Using Shur complement

theorem, we arrive at (19). The equivalency of (18) to (14)
can also be proved in a similar manner.

Remark 2.3: Notice that if the conditions (17)–(19) hold,
then (7) is also asymptotically stable for any ∆Ai satisfying
(16).

III. STABILIZING STATE FEEDBACK CONTROLLER
DESIGN

We are interested in designing a switching controller

u ∈ K(x)

K : X → 2U ;x 7→
{
z ∈ U | z = Kix if x ∈ Xi

}
(20)

for system (1) such that all Filippov solutions of (1) (φ(t))
satisfy limt→∞ φ(t) = 0. Considering a controller with the
structure given by (20), the controlled system with v ≈ 0
reduces to (7) with F supplanted by F́ : X → 2X ;x 7→
{z ∈ X | z = Acix if x ∈ Xi}, wherein Aci = Ai + ∆Ai +
(Bi + ∆Bi)Ki.

Lemma 3.1: The controlled switched system as defined
above is asymptotically stable at the origin provided that
there exist small positive constants εi, i ∈ I , εij , (i, j) ∈ Ĩ ,
matrices Ki, i ∈ I , a set of symmetric matrices Qi, i ∈
I , three sets of symmetric matrices Ui, Si, i ∈ I , Tij ,
(i, j) ∈ Ĩ with non-negative entries, matrices Wij , (i, j) ∈ Ĩ
of appropriate dimensions such that

Qi − ETi SiEi > 0 (21)
Ξi Qi KT

i B
T
i KT

i BTi
? −εi

3+ε2i
I 0 0

? ? −εi
1+ε2i

I 0

? ? ? −1
εi

I

 < 0 (22)

for all i ∈ I , and
Ξij Qi KT

j B
T
j KT

j BTj
?

−εij
3+ε2ij

I 0 0

? ?
−εij
1+ε2ij

I 0

? ? ? −1
εij

I

 < 0 (23)

for all (i, j) ∈ Ĩ .
Proof: We need to demonstrate that (22) and (23)

correspond to (14) and (15), respectively. Substituting Aci
in (15) yields ATj Qi + QiAj + WijN

T
ij + NijW

T
ij +

HT
ijTijHij + ∆ATj Qi + Qi∆Aj + KT

j B
T
j Qi + QiBjKj +

KT
j ∆BTj Qi + Qi∆BjKj ≤ ATj Qi + QiAj + WijN

T
ij +

NijW
T
ij +HT

ijTijHij+ 1
εij
QiQi+εij∆A

T
j ∆Aj+ 1

εij
QiQi+

εijK
T
j ∆BTj ∆BjKj +KT

j B
T
j Qi +QiBjKj ≤ Ξij + (εij +

3
εij

)QiQi + (εij + 1
εij

)KT
j B

T
j BjKj + εijK

T
j BTj BjKj . Uti-

lizing Shur complement theorem, we derive (23). Derivation
of (22) can be done similarly.

Remark 3.1: The conditions derived in Lemma 3.1 are
BMIs [14] in the variables Qi and Ki.

IV. ROBUST CONTROLLER SYNTHESIS WITH H∞
PERFORMANCE

In this section, we propose a set of conditions to design
a stabilizing switching controller of the form (20) with a
guaranteed H∞ performance. That is, a controller such that,
in addition to asymptotic stability, ensures that the induced
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L2-norm of the operator from v(t) to the controller output
y(t) is less than a constant η > 0 under zero initial conditions
(x(0) = 0); in other words,

1

2

(∫ ∞
0

yT (τ)y(τ)dτ

) 1
2

≤ η

2

(∫ ∞
0

vT (τ)v(τ)dτ

) 1
2

(24)
given any non-zero v ∈ L2[0,∞).

If we apply the switching controller (20) to (1)-(2), we
arrive at the following controlled system with outputs

ẋ(t) ∈ co

(
F̃
(
x(t), v(t)

))
y(t) ∈ G̃

(
x(t)

)
(25)

where, F̃ : X × V → 2X ; (x, v) 7→ {z ∈ Rn | z = Acix +
Dciv if x ∈ Xi} and G : X → 2R

m

;x 7→ {z ∈ Rm | z =
Cci(x) if x ∈ Xi} with

Aci = Ai + ∆Ai + (Bi + ∆Bi)Ki

Dci = Di + ∆Di

Cci = Ci + ∆Ci + (Gi + ∆Gi)Ki (26)

Proposition 4.1: System (25) is asymptotically stable at
the origin with disturbance attenuation η as defined in (24),
if there exist a set of symmetric matrices Qi, i ∈ I , three
sets of symmetric matrices Ui, Si, i ∈ I , Tij , (i, j) ∈ Ĩ
with non-negative entries, and matrices Wij , (i, j) ∈ Ĩ of
appropriate dimensions such that

Qi − ETi SiEi > 0 (27)

ATciQi +QiAci +ETi UiEi + η−2QiDciD
T
ciQi +CTciCci < 0

(28)
for all i ∈ I , and

ATcjQi + QiAcj +WijN
T
ij +NijW

T
ij +HT

ijTijHij

+ η−2QiDcjD
T
cjQi + CTcjCcj < 0 (29)

for all (i, j) ∈ Ĩ .
Proof: The proof is omitted here due to lack of space.

Lemma 4.2: Given a constant η > 0, the closed loop
control system (25) is asymptotically stable at the origin with
disturbance attenuation η, if there exist constants εij > 0,
(i, j) ∈ Ĩ , εi > 0, i ∈ I , matrices Ki, i ∈ I , a set of sym-
metric matrices Qi, i ∈ I , three sets of symmetric matrices
Ui, Si, i ∈ I , Tij , (i, j) ∈ I with non-negative entries, and
matrices Wij , (i, j) ∈ Ĩ of appropriate dimensions such that

Qi − ETi SiEi > 0 (30)

Λi < 0 (31)

for all i ∈ I , and
Λij < 0 (32)

for all (i, j) ∈ Ĩ , where

Λi =



Πi Qi KT
i B

T
i KT

i BTi KT
i G

T
i KT

i GTi
? −Θ−1i 0 0 0 0
? ? −εi

1+ε2i
I 0 0 0

? ? ? −1
εi

I 0 0

? ? ? ? −εi
2+εi+ε2i

I 0

? ? ? ? ? −εi
1+εi+2ε2i

I


Λij =



Πij Qi KT
j B

T
j KT

j BTj KT
j G

T
j KT

j GTj
? −Θ−1ij 0 0 0 0

? ?
−εij
1+ε2ij

I 0 0 0

? ? ? −1
εij

I 0 0

? ? ? ?
−εij

2+εij+ε2ij
I 0

? ? ? ? ?
−εij

1+εij+2ε2ij
I


with Πi = Ξi + (1 + 3

εi
)CTi Ci + (1 + 3εi)CTi Ci, Πij =

Ξij + (1 + 3
εij

)CTj Cj + (1 + 3εij)CTj Cj , Θi = (εi + 3
εi

)I +

η−2(1 + 1
εi

)DiD
T
i + η−2(1 + εi)DiDTi , and Θij = (εij +

3
εij

)I + η−2(1 + 1
εij

)DjD
T
j + η−2(1 + εij)DjDTj .

Proof: We need to apply Proposition 4.1. Inequality
(30) corresponds to (27). Substituting (26) in (29), the left-
hand side of (29) is simplified as LHS =

(
Aj+∆Aj+(Bj+

∆Bj)Kj

)T
Qi+Qi

(
Aj+∆Aj+(Bj+∆Bj)Kj

)
+WijN

T
ij+

NijW
T
ij+HT

ijTijHij+η
−2Qi(Dj+∆Dj)(Dj+∆Dj)

TQi+(
Cj+∆Cj+(Gi+∆Gi)Kj

)T (
Cj+∆Cj+(Gi+∆Gi)Kj

)
≤ ATj Qi + QiAj + WijN

T
ij + NijW

T
ij + HT

ijTijHij +
KT
j B

T
j Qi + QiBjKj + 2

εij
QiQi + εijATj Aj +

εijK
T
j BTj BjKj + η−2Qi

(
(1 + 1

εij
)DjD

T
j + (1 +

εij)DjDTj
)
Qi + (1 + εij)C

T
j Cj + (1 + εij)CTj Cj +

1
εij
CTj Cj + εijK

T
j G

T
j GjKj + 1

εij
CTj Cj + εijK

T
j GTj GjKj +

εijCTj Cj + 1
εij
KT
j G

T
j GjKj + εijCTj Cj + 1

εij
KT
j GTj GjKj +

KT
j

(
(1 + 1

εij
)GTj Gj + (1 + εij)GTj Gj

)
Kj .

With some calculation, it can be verified that
LHS ≤ Πij + Qi

(
2
εij
I + η−2(1 + 1

εij
)DT

j Dj + η−2(1 +

εij)DjDTj
)
Qi+εijK

T
j BTj BjKj+(

2+εij+ε
2
ij

εij
)KT

j G
T
j GjKj+

(
1+εij+2ε2ij

εij
KT
j GTj GjKj) + 1

εij
KT
j B

T
j BjKj + εijQiQi +

1
εij
QiQi + εijK

T
j B

T
j BjKj which is equivalent to LHS ≤

Πij +QiΘijQi + (
1+ε2ij
εij

)KT
j B

T
j BjKj + εijK

T
j BTj BjKj +

(
2+εij+ε

2
ij

εij
)KT

j G
T
j GjKj + (

1+εij+2ε2ij
εij

)KT
j GTj GjKj .

Utilizing Shur complement theorem, (32) can be obtained.
Thus, if (32) is feasible, then (29) is satisfied. Analogously,
it can be proved that (31) is consistent with (28).

It is worth noting that conditions given in Lemma 4.2 are
BMIs in matrix variables Ki and Qi. In order to deal with
the BMI conditions encountered in Lemmas 3.1 and 4.2, the
following V −K iteration algorithm is suggested:

• Initialization: Select a set of controller gains based on
pole placement method or any other controller design
scheme to predetermine a set of initial controller gains.
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Fig. 1. The responses of the closed loop control system: the stable
controller synthesis (top) and the H∞ controller synthesis (bottom). The
dashed lines illustrate the facets.

• Step V: Given the set of fixed controller gains Ki, i ∈ I ,
solve the following optimization problem

minQi,Si,Ui,Tij
γi

subject to (30),Λi − γiI < 0, and Λij − γiI < 0

for a set of matrices Qi, i ∈ I .
• Step K: Given the set of fixed controller gains Qi, i ∈ I ,

solve the following optimization problem

minKi,Si,Ui,Tij
γi

subject to (30),Λi − γiI < 0, and Λij − γiI < 0

for a set of matrices Ki, i ∈ I .
The algorithm continues till γi < 0, i ∈ I .

Remark 4.1: Generalization of the results presented in this
paper to the case of piecewise affine (PWA) dynamics is
straightforward. This can be simply realized by augmenting
the corresponding system matrices as demonstrated in [8].

V. SIMULATION EXAMPLE

In this section, we demonstrate the performance of the
proposed approach using a numerical example. For the
sake of comparison, the example used in [5] is selected;
but, instead of Carathéodory solutions, Filippov solutions
are investigated. Therefore, the system structure has to be
modified as delineated next. Consider an uncertain PWL
system described by (25) and (26) with I = {1, 2, 3, 4} and

the state-space is a polyhedral set divided into four polytopes.
The associated system matrices are

A1 = A3 =

[
1 0.1
−0.5 1

]
, A2 = A4 =

[
1 0.5
−0.1 −1

]

B1 = B3 =

[
0
1

]
, B2 = B4 =

[
1
0

]

D1 = D2 = D3 = D4 =

[
0
1

]
, C1 = C2 = C3 = C4 =

[
0
1

]T
The uncertainty bounds are characterized as

A1 = A3 =

[
0 0.02

−0.01 0

]
,A2 = A4 =

[
0.01 0

0 −0.02

]

B1 = B3 =

[
0

0.02

]
,B2 = B4 =

[
0.02

0

]
The matrices characterizing the polytopes are given as fol-
lows

E1 = −E3 =

[
−1 1
−1 1

]
, E2 = −E4 =

[
−1 1
1 1

]

F1 =

[
E1

I

]
, F2 =

[
E2

I

]
, F3 =

[
E3

I

]
, F4 =

[
E4

I

]

N12 = N34 =

[
1
1

]
, N14 = N23 =

[
−1
1

]

H12 = −H34 =

[
−1 0
1 0

]
, H14 = −H23 =

[
1 0
1 0

]
It is worth noting that the open-loop system is unstable
and since solutions with infinite switching in finite time are
considered the approach presented in [5] and common Lya-
punov based methods are not applicable. The V −K iteration
algorithm is initialized using pole placement method. The
assigned closed-loop poles for the dynamics in each polytope
are (−3,−2) and the corresponding initial controller gains
are

K1 = K3 =

[
−119.5
−7

]T
,K2 = K4 =

[
−5
19.5

]T
Using the scheme presented in this paper for a set of
constants ε12 = ε23 = ε14 = ε34 = 10 and ε1 = ε2 =
ε3 = ε4 = 100, the following solutions has been obtained

Q1 = Q3 =

[
135.26 2.18
2.18 1.83

]
, Q2 = Q4 =

[
84.67 −5.43
−5.43 707.09

]

K1 = K3 =

[
−389.92
−30.14

]T
,K2 = K4 =

[
−12.88
−0.56

]T
γmin = −4.5328× 10−4
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Fig. 2. Evolution of system states when the H∞ controller is applied: with
an initial condition in the interior of a polytope (top) and with an initial
condition on a facet (bottom).

for the stable controller synthesis in three iterations and

Q1 = Q3 =

[
463.75 24.94
24.94 2.39

]
, Q2 = Q4 =

[
52.26 −7.39
−7.39 763.47

]

K1 = K3 =

[
−637.72
−30.14

]T
,K2 = K4 =

[
−21.53
−1.69

]T
γmin = −2.7186× 10−5

for the H∞ controller design with η = 0.1 in five iterations.
Consequently, it follows from Lemma 4.2 that the closed
loop control system is asymptotically stable at the origin
and the disturbance attenuation criterion is satisfied. Fig.
1. portrays the simulation results of four different initial
conditions (in the absence of disturbance) which prove the
stability of the closed loop systems. Notice, in particular,
that solutions with infinite switching in finite time on facets
are also present (see Fig. 2.). This should be opposed to the
results in [5] where only Carathódory solutions are taken into
account. Additionally, the simulation results in the presence
of disturbance (v(t) = 4 sin(2πt)) and zero initial conditions
are illustrated in Fig. 3. which ascertains the disturbance
attenuation performance of the proposed controller.

VI. CONCLUSIONS

In this paper, the stability and control problem of PWL
and uncertain PWL systems with Filippov Solutions was
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Fig. 3. Response of the closed loop control system with disturbance and
zero initial condition: the stable controller synthesis (left) and the H∞
controller synthesis (right).

considered. The foremost purpose of this research was to
extend the previous results on PWL systems to the case of
solutions with infinite switching in finite time and sliding
motions. Correspondingly, a set of matrix inequality con-
ditions was proposed to investigate the stability of a PWL
or uncertain PWL system. Additionally, two methods based
on BMIs are devised for the synthesis of stable and robust
H∞ controllers for PWL and uncertain PWL systems with
Filippov solutions.
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