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This paper proposes a new version of the particle filtering (PF) algorithm based on the invasive weed
optimization (IWO) method. The sub-optimality of the sampling step in the PF algorithm is prone to
estimation errors. In order to avert such approximation errors, this paper suggests applying the IWO
algorithm by translating the sampling step into a nonlinear optimization problem. By introducing an
appropriate fitness function, the optimization problem is properly treated. The validity of the proposed

method is evaluated against three distinct examples: the stochastic volatility estimation problem in
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finance, the severely nonlinear waste water sludge treatment plant, and the benchmark target tracking
on re-entry problem. By simulation analysis and evaluation, it is verified that applying the suggested IWO
enhanced PF algorithm (PFIWO) would contribute to significant estimation performance improvements.
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1. Introduction

State estimation plays a key role in different applications such
as fault detection, process monitoring, process optimization, and
model based control techniques [1]. Fortunately, a large group of
models in signal processing can be represented by a state-space
form in which prior knowledge of the system is available. This prior
knowledge allows us to exploit a Bayesian estimation approach.
Within this statistical framework, one can perform inference on
the unknown states according to the posterior distribution. In
most cases, the observations arrive sequentially in time, and one
is interested in recursively estimating the hidden states from the
time-varying posterior distribution. This problem is referred as
the optimal filtering problem [2,3]. Owing to the mathematical
complexity, only few specific models (including linear Gaussian
state-space models and finite state-space hidden Markov models
(HMM) [4]) can be adopted to reach an analytical solution. The
popular Kalman filter (KF) [2,3] and the renowned HMM filter [4]
provide close form solutions to the latter models.

In many real-life applications, however, the models possess
nonlinearity and non-Gaussian behavior. Thus, an optimal solution
to the filtering problem cannot be attained. In this case, it becomes
necessary to exploit approximate and computationally traceable
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sub-optimal solutions to the sequential Bayesian estimation
methodology. Over the past decades, several sub-optimal filtering
methods such as the extended Kalman filter (EKF), and the
unscented Kalman filter (UKF) have been proposed in the open
literature [5]. But, these filtering algorithms suffer from the curse
of dimensionality; that is, they perform poorly as the dimension of
the model states increases. Furthermore, the rate of convergence
of the approximation error decreases dramatically for large state
dimensions, say 4 [5]. Notably, it has been demonstrated that
the estimation performance of UKF inhibits intrinsic limitations.
In other words, the deterministic choice of the so called sigma
points confines the flexibility desired to construct a probability
distribution.

The particle filter (PF), first brought forward by Gordon et al. [6],
employs a set of N random samples (or particles) to approximate
the posterior distribution. The particles are evolved over time via
a combination of importance sampling and re-sampling steps. In
a few words, the re-sampling step statistically multiplies and/or
discards particles at each time step to adaptively concentrate
particles in the regions of high posterior probability [7]. The
popularity of the PF results from the notion that it does not call
for model simplification or adopting special distributions.

Recently, researchers have shown an increased interest in
the subject of integrating meta-heuristic algorithms in PF. In
a seminal paper, Tong et al. [8] proposed an optimized PF
based on particle swarm optimization (PSO) algorithm [9] which
demonstrated improved estimation accuracy. Many subsequent
studies also followed the same trend using PSO; e.g., refer
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to [10,11]. In [10], the authors exploited a similar method based
on PSO for visual tracking, and claimed that the modified scheme
has better accuracy than the conventional PF. Later, Jing et al. [11]
further advanced the algorithm brought forward in [8] with a
new re-sampling strategy. However, to authors’ knowledge, there
has been very little discussion on developing other meta-heuristic
based PF algorithms, thus far. The studies reported to date have
focused on adjusting the PSO enhanced PF algorithm rather than
incorporating other techniques established upon evolutionary
algorithms and swarm intelligence.

The bio-inspired IWO algorithm was introduced by Mehrabian
and Lucas [12] which imitates the colonial behavior of invasive
weeds in nature. The IWO algorithm has shown to be virtu-
ous in converging to optimal solution by employing some basic
characteristics of weed colonization, e.g. seeding, growth and com-
petition. In [13], Chakraborty et al. investigated the search per-
formance and specifically the effect of population variance on the
explorative power of the algorithm. Later, Roy et al. [ 14] proposed
a hybrid optimization algorithm by integrating the optimal forag-
ing theory in IWO which evinced improved optimization capac-
ity. Previously, the IWO algorithm has been utilized in a surfeit
of applications including optimizing and tuning of a robust con-
troller [12], antenna configuration optimization [15], optimal ar-
rangement of piezoelectric actuators on smart structures [ 16], DNA
computing [17], and etc.

This paper considers the implementation of the IWO algorithm
as a mean to optimize the PF method. Since sampling in PF is
carried out in a sub-optimal manner, it can bring about some
performance defects such as sample impoverishment [5]. By
introducing a suitable fitness function for particles, such problems
are circumvented and an enhanced PF algorithm is achieved
thanks to the IWO approach. The functionality of the combined
method is verified using three nonlinear state estimation problems
from different fields: volatility estimation of a stock market, state
estimation of a nonlinear chemical process, and the re-entry
vehicle tracking problem.

The rest of this paper is organized as follows. Section 2 provides
a concise description of some preliminary notions including the
filtering problem, the Monte Carlo method, Importance Sampling,
and the basic particle filtering algorithm. The IWO algorithm is
limned in Section 3. The proposed PFIWO method is discussed in
Section 4. Simulation Results based on the PFIWO algorithm and
some discussions are outlined in Section 5. Section 6 concludes the

paper.
2. Preliminaries
2.1. The filtering problem

Consider the general class of nonlinear non-Gaussian systems
with state-space model as described below

X = f(Xk—1, Ug—1, Vk—1), Xk ~ P(XilXk—1) (1a)
Yk = Xk, Uk, wi), Yk ~ PWklXe), (1b)

where the subscript k denotes the time instance. x, € R™ represent
the system states with probability distribution of p(xi|x¢_1) which
is not directly measurable, and y, € R" is the noise corrupted
observation with likelihood p(yk|x¢). The maps f € R™ x R™ x
R™ — R™and g € R™ x R™ x R™ — R are generally nonlinear
functions. u stands for known inputs. v and w represent the process
and measurement noise, respectively. The overall structure is
illustrated in Fig. 1. Filteringis the task of sequentially estimating
the states (parameters or hidden variables) of a system as a set
of observations become available on-line [2,3]. Strictly speaking,
filtering is aimed at estimating the posterior distribution p(xk|yx)
as a set of observations Yy = (y1, 2, ..., yi)" arrives. It is worth
noting that the results obtained in this section are established upon
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Fig. 1. A graphical representation of the state-space model described by Eq. (1).
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Fig. 2. The Bayesian approach to the filtering problem.

the following assumptions:

1. The states follow a first order Markov process, i.e., Xg|Xk—1 ~
DPxilxi_ (Xk|Xk—1) with an initial distribution of p(xo).

2. The measurements are conditionally independent given the
states, i.e., each y, only depends on xj.

The Bayesian solution to the filtering problem consists of two
stages [2,3,5]:

1. Prediction: let the above assumptions hold. Using the prior
density function, and the Chapman-Kolmogorov equation we
have

pelyk—1) = /P(Xk|xk—1)P(Xk—1|J/k—1)dxk—1- (2)
2. Correction: based on the Bayes’ formula

PVilx)p Xk Y1)

— TrrRr R 3
p(Xklyk) p(‘ylc|}’l<71) ( a)
wherein
PVklyk—1) = /P(Vk|xk)P(Xk|Yk—1)ka~ (3b)

The algorithm is initialized with p(xg|yo) = p(Xo) and p(x1|yo) =
p(x1). One step operation of the Bayesian filtering is portrayed in
Fig. 2. However, it is obvious that achieving a closed form analytical
solution to the untraceable integral in Eq. (2) and therefore the
solution to Eq. (3) is a cumbersome task. The problem becomes
even more severe as the state dimensions increase. Thus, an
optimal solution cannot be attained except under very restricting
conditions (linear transition functions and Gaussian noise) using
the well-known KF. The interested reader can refer to [2,3] which
provide a comprehensive theoretical overview of available optimal
methods. Sub-optimal solutions exist for rather general models
with nonlinear evolution functions and non-Gaussian noises.
Nevertheless, due to the nature of these methods (e.g. EKF and UKF)
which are based on local linearization, the estimation performance
is, more or less, limited. Estimation techniques established upon
sequential Monte Carlo methods, namely the PF, are a promising
alternative to local linearization algorithms [6,18].

2.2. Monte Carlo and importance sampling techniques

In the Monte Carlo technique, one is concerned with estimating
the properties of some highly complex probability distribution
p(x), e.g. expectation

E(s(x)) = / s(X)p(x)dx (4)

where s(x) is some useful function for estimation. In cases where
this cannot be obtained analytically, the approximation problem
can be handled indirectly. It is possible to represent p(x) by a set
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of random samples X, i = 1,2,...,
Carlo representation is [ 16]

N. Consequently, the Monte

N
P = ;;aoc _ %) (5)

where §(.) is the Dirac delta function. Then, the expectation can be
reformulated as:

1 & y
/s(x)p(x)de /s(x)ﬁ ;5()(—)()(1)(
1T
N;s(;?). (6)

Alternatively, suppose that the samples X' are drawn from a

distribution g(x) instead of p(x). Now, the expectation can be
estimated using importance sampling as follows:

E(s(x)) = / P00 = / s 1000 )(p)()

~ PO TN~ s
N/s() ()NZ(S(X %) dx
—Z (”)”(")——Zws( 7)

i=1 q(xl
is the importance weight. So, p(x) can be

E(s(x))

pGE)
q&

where w;
estimated as

N
pex) =Y wid(x—X),
i=1

N
sty wi=1. (8)
i=1

2.3. The basic particle filter

The particle filtering scheme approximates the multi-
dimensional integral in the Bayesian prediction and update steps
using Monte Carlo sampling. Consider Eqs. (2) and (3), the discus-
sion is followed by reformulating the latter equations based on the
Monte Carlo approximation described in the previous section. Let
X', i=1,2,...,N be the drawn samples from the posterior dis-
tribution p(x|yk). The filter is initialized as [5,18,19]:

% ~polyo), i=1,2,...,N. 9)
Then, fork =1, 2, ... we have

p(elyi) = Z wis(x — X)),

i=1

st Zw 1. (10)

Fori = 1,2,...,N sample from the proposal distribution
q(xk|x¢—1) as
%~ q(ul¥,_)- (11)

Subsequently, update the importance weights

wk = k1 POkl PR IX 1)

k— gph =~ (12)
, : Q(yk|x;<71)

Provided that p(x|xx_1) = q(xk|Xk—1), Egs. (11) and (12) convert
to

R~ p(xil®,_)) (13a)
wi = wf pulX_y). (13b)
Then, fori = 1, 2, ..., N normalize the weights

k
wh= - (14)
> uf

A prevalent problem with PF is the degeneracy phenomenon,
wherein after few iterations, all but few particles will have trivial
weights. A measure of degeneracy is the effective sample size Neg
which can be empirically evaluated as

1
ff = - (15)

X (w?
i=1

The conventional approach to solve around the problem of sample

degeneracy is to define a degeneracy threshold Ny,. If Neff < N,
re-sampling should be initiated [7].

2>

3. The invasive weed optimization

3.1. Key terms

Prior to describing the IWO algorithm, the key terms are
explained as follows:

a Seed: each unit in the colony (here the particles) that
encompasses a value for each variable in the optimization
problem before fitness evaluation.

b Weed/Plant: any seed that is evaluated grows to a weed or plant.

¢ Fitness: a value corresponding to the goodness of each unit after
being evaluated.

d Field: the search/solution space.

e Maximum weed population: a parameter preset representing the
maximum number of possible weeds in the field after fitness
assessment.

3.2. The IWO algorithm

The process flow of the IWO algorithm is outlined below

[14,15]:

1. Initialize the seeds S; = (51, S2, . . ., Sp)T, where n is the number
of selected variables, over the search space. Thus, each seed
contains random values for each variable in the n — D solution
space.

2. The fitness of each individual seed is calculated according to
the optimization problem, and the seeds grow to weeds able
to produce new units.

3. Each individual is ranked based on its fitness with respect to
other weeds. Subsequently, each weed produces new seeds
depending on its rank in the population. The number of seeds to
be created by each weed alters linearly from Ny, to Npax which
can be computed using the equation given below

Fi - Fworst

Number of seeds = (Nmax - Nmin) + Nmin' (16)

best — F, worst
In which F; is the fitness of i'th weed. Fyyorst, and Fyes: denote
the best and the worst fitness in the weed population. This step
ensures that each weed takes part in the reproduction process.
4. The generated seeds are normally distributed over the field with
zero mean and a varying standard deviation of oy, described by

itermay — iter \"
Oiter = (7.max ) (00 — o7) + o7 (17)
1termax

where itern,x and iter are the maximum number of iteration
cycles assigned by the user, and the current iteration number,
respectively. op and oy represent the pre-defined initial and
final standard deviations. n is called the nonlinear modulation
index. In order to obtain a full and swift scan of possible values
of standard deviation, it has been examined that the most
appropriate value for nonlinear modulation index is 3 [15].
The fitness of each seed is calculated along with their parents
and the whole population is ranked. Those weeds with less
fitness are eliminated through competition and only a number
of weeds remain which are equal to Maximum Weed Population.
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5. The procedure is repeated at step 2 until the maximum number
of iterations allowed by the user is reached.

4. The proposed PFIWO algorithm

At the outset of this section, some exclusive features of the IWO
algorithm are emphasized. The IWO algorithm certifies that all
possible candidates would participate in the reproduction process.
In contrast, most meta-heuristic algorithms would not allow the
less-fitted individuals to produce offspring such as the GA. Besides,
the IWO algorithm is straightforward and it includes less deal of
computational burden unlike other methods. As a good illustration,
one can consider the PSO algorithm. PSO needs to update both the
position and velocity of individuals in each iteration round which
require some extra calculations to find the best position in the
neighborhood of each particle as well as the whole population. This
issue imposes a considerable deal of computational burden.

Having reviewed a number of unique characteristics of IWO,
the discussion is proceeded by presenting the proposed PFIWO
algorithm. Owing to the fact that the sampling step of the
conventional PF is sub-optimal, the IWO is suggested as a means
to enhance the sampling step. Here, the goal of the IWO in the
sampling step is to trace the particles which correspond to greater
weights. Therefore, it is convenient to calculate the fitness of i'th
particle as

. _ PO PR

; — (18)
l q(yk|x;<71)

which in case of p(x|x,_1) = q(xk|xx—1) reduces to

Fi = pOil%_y)- (19)

Consequently, the IWO algorithm’s task would be to maximize the
fitness function. The sampling step is modified as follows:

1. The fitness of each particle is evaluated, and the particles are
ranked based on their fitness in the population; i.e., those
particles which correspond to greater weights are of higher
rank.

2. Perform steps 3, 4, and 5 of the IWO algorithm as described
in Section 3 until a predefined number of iteration cycles is
reached. It is worth noting that since the basic PFis considerably
time-consuming the maximum number of iteration cycles
should be chosen as a compromise between estimation
performance and algorithm run-time.

3. Subsequently, the weights are updated and normalized using
Egs. (13) and (14).

4. In order to reproduce and pick out the particles with larger
weights the re-sampling step is implemented. That is,

N
(7w} = ;?;',l . (20)
k iJi=1 > N _

5. Simulation results

In this section, the estimation performance of the proposed
PFIWO method is examined and compared with the conventional
PF. Three examples are investigated in this section. The first
example is devoted to stochastic volatility estimation of a
simulated market. The second example considers the state
estimation problem of a highly nonlinear chemical process, waste
water sludge treatment. Lastly, the performance of both algorithms
is challenged with a target tracking on the re-entry problem
which has been actively studied as a benchmark for comparing the
functionality of several estimation methods.

5.1. The stochastic volatility problem

A prominent group of structures for analyzing volatility are
models in which the variance is specified to follow some latent

10030 . . . T . : : . T
10020 -1
10010

10000

Stock Prices

5990
9980 -

1] S T L
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0 &0

1 1 i ! i 1 1 i
100 150 200 250 300 350 400 450 500
days

Fig. 3. The fluctuations of the stock prices in the simulated market.

Table 1
The parameter values regarding the simulated stock market.
[ (P o Op 51
0.1 0.99 0.1 0.05 10000

stochastic processes. Such models are referred to as stochastic
volatility (SV) models which appear in the theoretical finance
literature on option pricing [20-24]. Practical translations of the
SV model are classically formulated in discrete time. The canonical
model in this class for regularly spaced data is [20,24]

X1 =pu+ox —p)+oyme t =2 (21a)
o2
hy ~N , ——— 21b
1 (M 1_¢2> (21b)
(1)
ye=e\ 2 JE t>1 (21¢)

where superscript t accounts for discrete time in days, and x; is the
unobserved log volatility. y, denotes the daily log return calculated
as

S,
ye = log (—) (22)
Si—1

which is earned on stock S between days t and t — 1. h; is the
log volatility at day t which is assumed to follow a stationary
process (|¢| < 1).&: and 7, are uncorrelated Gaussian processes
(representing the market shocks) with zero mean and variance of 1.
¢ is the persistence in the volatility, and o, signifies the volatility of
the log volatility. Regarding the economical aspects of the SV model,
the interested reader can refer to [20]. Using Eqs. (21) and (22), the
financial market corresponding to the parameters listed in Table 1
was simulated. The fluctuations of stock prices are simulated for a
time period of 500 days as depicted in Fig. 3. In the first 50 days,
the prices grow as the market experiences desirable conditions.
From day 51 on, due to say a financial crisis, the stock prices decline
dramatically. The daily log return of stock prices is as sketched in
Fig. 4. The corresponding volatility is as illustrated in Fig. 5. The PF
algorithm as described in Section 2.3. was implemented with 80
particles and the degeneracy threshold was chosen as Ny, = 70.
One should note that the values for iteryay, Nmax, and Npi, must
be selected such that the run-time of the algorithm do not exceed
the tolerable range. Moreover, it is important to notice that further
incrementing the values for these parameters do not necessarily
lead to better results. The initial and final dispersion standard
deviations (op and oy) should be adjusted such that the desirable
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daily log return
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Fig. 4. Daily log return associated with the simulated stock market.

0.8 —T T N E— T
0.6
oalb Xl
= 020 W
5
E
04 “.”‘@.‘”..Hi.”..ﬂé.”“”,;..u
06 ; 1 1 i 1 i 1 1 i
0 &0 100 150 200 250 300 350 400 450 500
days
Fig. 5. Resultant stochastic volatility.
Table 2
Parameters used in the PFIWO method for the stochastic volatility problem.
itermax oo of Nmax Nmin Max. weed number
20 1 0.001 5 1 50
Table 3

MAPE performance of PF and PFIWO in 10 simulations pertaining to the stochastic
volatility problem.

Estimation method Best (%) Worst (%) Mean (%)
PF 1.54 8.61 6.13
PFIWO 0.78 3.39 1.89

Table 4
RMSE performance of PF and PFIWO in 10 simulations pertaining to the stochastic
volatility problem.

Estimation method Best Worst Mean
PF 0.1892 2.3471 0.3943
PFIWO 0.0627 0.8154 0.0836

estimation accuracy is reached in regard with iter,,. All in all, the
suitable values of these parameters can be achieved empirically
depending on the application.

Having considered the above discussions, the proposed PFIWO
method was utilized with the parameters as given in Table 2. The
estimated volatility using PF and PFIWO are provided in Fig. 6.
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Fig. 6. Volatility estimation results using PF (red) and PFIWO (green). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

As it is observed, except for a peak error at 272th day, the PFIWO
has superior estimation performance than the basic PF algorithm.
In addition, for the sake of a more reliable comparison, two
performance criteria are adopted in this paper: 1. Mean of absolute
percentage error (MAPE) defined as

X(i) — (i)
x(i)

wherein, x denotes the actual values of states, and X signifies the
estimated values. 2. Root Mean Square Error (RMSE) given by

1 N
MAPE:—Z

N (23)

i=1

1 N
_ |1 PO
RMSE = N ;:1 (x(i) — x(i))2. (24)

Tables 3 and 4 provide respectively the attained MAPE and RMSE
performance of 10 consecutive simulations. From Tables 3 and 4,
it can be readily deduced than PFIWO has performed better than
PF. In particular, the worst attained state estimates by PFIWO
correspond to less total error than those of PF.

5.2. Waste water sludge treatment

State estimation of nonlinear chemical processes is an active
research subject [25]. The activated sludge process is one of
the most commonly studied biological wastewater treatment
methods. In a sludge treatment process, a bacterial biomass
suspension (the activated sludge) accounts for the exclusion of
contaminants [26]. Overall, the interaction between biomass and
substrate is the fundamental part of the treatment process [27].
The interested reader can access a comprehensive review on
waste water sludge treatment plants in [28]. The mathematical
model used in this study is based on the concept of death-
regeneration which has its roots in the work presented in [29].
The following differential equations describe the behavior of the
treatment process under endogenous and non-limiting dissolved
oxygen conditions in a batch reactor [27]:

Sy Ao S R(t)

S() = _EmX(f) + khxi% (25a)
. R

RO = (= b0 — k0 (25b)

X X(t)
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Table 5
Parameters used in the PFIWO method for the waste water sludge treatment
problem.

itermax 0o oy Ninax Ninin Max. weed number
15 1 0.0001 3 1 80
. S(t
X(t) = ALX(t) — bX(t) (25¢)
Ks 4+ S(t)
P(t) = f,bX(0). (25d)

The first equation signifies the biodegradable substrate (S(t))
dynamics in terms of nonlinear losses resulted from the growth
of biomass and production by hydrolysis of slowly biodegradable
substrate (R(t)). The second equation indicates that the alteration
of R is controlled by a fraction of the decay of heterotrophic
biomass (X (t)) and hydrolysis. In the third equation, the change
in biomass caused by decay and growth is formulated. Lastly, the
fourth equation characterizes the accumulation of inert material
(P(t)) as a result of decay of the biomass.

The observation model which subsumes the measurements -
endogenous respiration rate (r in mg O, /I h) and mixed liquor
volatile suspended solids (£2 in gCOD,/m?) - and the process states
is given by

1—6 S

r(t) = iy S(t)X(t) (26a)

£22(t) = X(©) + P(t) + R(©). (26b)

In order to consider the modeling uncertainties, we adopt a non-
Gaussian noise model. Suppose a Gamma probability distribution
function given by

e P

BT (er)

where I'(.) represent the Gamma function, « is the shape
parameter, and S is the scale parameter. Let « = 2,and 8 = 5.
This density function is used to characterize the noise associated
with the model dynamics. Therefore, a noise signal is generated
using the probability distribution given by Eq. (27) and added
to each process state. Moreover, in order to take into account
sensor errors, two Gaussian noise processes (N(0,0.5)) were
generated and added to the measurements. The values for different
parameters associated with the measurement and process model

plx, o, B) = x*""

~ (e, B) (27)

relatively faster dynamics than the other two states, they were
simulated and estimated in a time period of 2 h using the
Euler-Maruyama method; whereas, X (t) and P(t) were simulated
in the time span of 200 h. It should be noted that in all
cases 200 data samples were used. Consequently, the Euler step
in the first set of simulations was set to 0.01 h, and in the
second round was adjusted to 1 h. Based on the models and the
introduced noises, a state estimation simulation was performed.
The number of particles in the PF algorithm was preset to 100,
while the number of particles for the PFIWO algorithm was set
to 80. The remaining parameters regarding the proposed PFIWO
methodology are presented in Table 5. The estimated states are
depicted in Fig. 7, and the estimation errors associated with each
method are portrayed in Fig. 8. Note that due to the extreme
nonlinearity of the state-space model and the non-Gaussian nature
of the associated process noise, PF is not able to completely
follow the state fluctuations. Clearly, PFIWO has led to greater
state approximation accuracy. Furthermore, the corresponding
RMSE and MAPE values for different states in 10 simulations are
provided in Tables 6 and 7. Again, it can be observed that the
state estimation errors from the PFIWO algorithm are considerably
lower than those of PF. We remark that the number of particles
has been augmented to 200 in order to arrive at a more reasonable
justification.

5.3. Tracking a ballistic object on re-entry

This section considers the re-entry tracking problem, where a
ballistic object enters the atmosphere at high altitude and at a
very high speed. The position of the object is tracked by a radar
system which measures the range and the bearing. This problem
has been addressed by a number of papers [30-32] on nonlinear
filtering, since the forces which affect the object possess strong
nonlinearities and are a challenge to any filtering method. There
are three major forces in effect. The chief force in operation is
aerodynamic drag, which is a function of object speed and has
a considerable nonlinear variation in altitude. The second one is
the gravity, which accelerates the object toward the center of the
earth. The remaining forces are random buffeting terms [30]. Under
such forces, the trajectory of the object is almost ballistic at the
beginning. But, as the density of the atmosphere increases, drag
effects become important and the object decelerates rapidly until
its motion becomes almost vertical. The state-space model for the
system described above can be characterized as follows [31]:

are as follows [26]: S(0) = 100 mg/1, R(0) = 100 mg/l, X(0) =  X1(t) = x3(t) (28a)
1500 mg/l, P(0) = 100 mg/l, 0 = 0.67,» = 0.17 I/h,b = X3 (1) = x4(t) (28b)
0.025 1/h, k, = 0.11/h,K; = 20 mg/l, Ky = 0.02 mg/l, and .
Pyt /K 8/l K 8/ k5(6) = DO + GOX (O) + o1 (0 (280)
» = 0.08. .

The differential equations (25a)-(25d) were simulated based ~ X4(t) = D()Xa(t) + G(D)x2(t) + @, (t) (28d)
on the Euler-Maruyama method. Since S(t) and R(t) possess X5(t) = ws(t) (28e)
Table 6
MAPE performance of PF and PFIWO in 10 simulations pertaining to the wastewater sludge treatment problem.

Estimation method Best Worst Mean

R (%) S (%) X (%) P (%) R(%) S (%) X (%) P (%) R (%) S (%) X (%) P (%)

PF 8.34 9.92 11.34 13.46 20.32 18.49 28.11 28.67 10.72 12.06 28.11 28.67

PFIWO 291 2.98 1.83 2.02 6.74 5.47 7.56 4.15 3.07 3.49 2.55 2.63
Table 7
RMSE performance of PF and PFIWO in 10 simulations pertaining to the wastewater sludge treatment problem.

Estimation method Best Worst Mean

R S X P R S X P R S X P
PF 0.9629 1.7195 0.9284 1.8132 4.3842 4.0377 3.1937 4.3846 2.7203 2.1483 1.5355 2.0018
PFIWO 0.0387 0.0984 0.0742 0.0661 2.3721 1.0378 2.0469 1.6032 0.0822 0.1105 0.5997 0.3471
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Fig. 7. The estimated states (a) R, (b) S, (c) X, and (d) P.

wherein x; and x, denote the position of the object in two
dimensional space, x3 and x4 are the velocity components, and xs is
a parameter associated with the object’s aerodynamic properties.
D(t) and G(t) are the drag-related and gravity-related force terms,
respectively. w;(t), i = 1, 2, 3 are the process noise vectors. The
force terms can be calculated as

(RO — R(t))

Dty =p)exp| —— ) V() (29a)
Hp

G(t) = — ) (29b)

B(t) = Boexp (xs5(t)) (29¢)

where R(t) = ,/x3(t) + x4(t) is the distance from the center of the

earth and V(t) = ,/x3(t) + x3(t) is the object speed. The radar

(which is located at (Rg, 0)) is able to measure r (range) and 0
(bearing) at a frequency of 10 Hz as follows

r =/ (X1(6) — Ro)® + x:(t) + £1(¢) (30a)
6 = arctan (’Q(t)) 5 (30D)
x1(t) — Ro

where &;(t) and &,(t) are zero-mean uncorrelated noise processes
with variances of 1 m and 17 m rad s [30,31]. Let the simulated
discrete process covariance be [32]

2.4064 x 107° 0 0
Qk) = 0 2.4064 x 10> 0 (31)
0 0 1078

The values for different constants are set as [31]

Bo = —0.59783

Ho = 13.406

G, = 3.9860 x 10

Ro = 6374. (32)

The stochastic differential equations (28a)-(28e) was simulated
using 2000 steps of the Euler-Maruyama method with At = 0.1s.
The number of particles was set to 1500 which is relatively low
for a target tracking problem. The main reason for this choice is
to demonstrate the ability of the PFIWO method to estimate the
states of the ballistic object with less number of particles where PF
cannot reach an acceptable result. The degeneracy threshold Ny,
was selected as 1200, and a systematic re-sampling scheme [7]
has been chosen for the PF method. The parameters of the PFIWO
algorithm are given in Table 8. Note that the Max. Weed Number
should be equal to the number of particles, as it is the case in all
of the preceding examples. The target tracking results obtained
using the PF and PFIWO methodologies are depicted in Fig. 9.
The corresponding tracking errors are also provided in Figs. 10
and 11. As it is observed from the figures, when the PFIWO
scheme is used, the tracking errors are in the satisfactory range
and PFIWO is capable of tracking the object’s trajectory. On the
other hand, large state estimation errors result as the traditional PF
algorithm is utilized. It is obvious that the deteriorated estimation
accuracy of PFis a consequence of the number of particles, whereas
the proposed PFIWO method has preserved its approximation
performance with the same number of particles. Moreover, the
number of particles has been increased to 3000 and the same
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Table 8
Parameters used in the PFIWO method for the re-entry target tracking problem.
itermax oo oy Ninax Nin Max. weed number
15 0.1 0.000001 4 1 1500
Table 9

MAPE performance of PF and PFIWO in 10 simulations pertaining to the re-entry
target tracking problem.

Estimation method Best Worst Mean
x1 (%) x(%)  x1(%)  x(%)  x1(%)  x2(%)
PF 5.47 7.36 12.73 10.48 7.53 8.04
PFIWO 2.89 2.36 5.15 6.03 3.33 4.62
Table 10

RMSE performance of PF and PFIWO in 10 simulations pertaining to the re-entry
target tracking problem.

Estimation method Best Worst Mean
X1 X2 X1 X2 X1 X2
PF 0.8947 0.9257 2.7435 3.1783 1.0074 1.2715

PFIWO 0.1745 0.1011 0.9882 0.9917 0.3078 0.4822

simulations have been launched 10 times. The resultant MAPE
and RMSE errors are portrayed in Tables 9 and 10. Once more
as expected, the results sketched in these tables corroborate the
claim that PFIWO results in significant less state approximation
error.

Taken together, the obvious finding that emerges from the set
of simulations given in this section is that the proposed PFIWO
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Fig. 9. Tracking performance of PF and PFIWO.

method can be applied as a powerful state estimation algorithm
in case of model nonlinearity and in the presence of non-Gaussian
noises.

6. Conclusions

An enhanced PF algorithm established upon the IWO scheme
is proposed. Firstly, the sampling step is transformed to an
optimization problem by defining an apt fitness function. Then, the
IWO algorithm is exploited to deal with the optimization problem
efficiently. The results based on the proposed methodology are
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supplemented which verifies the algorithm’s accuracy. It is,
therefore, demonstrated that the proposed algorithm can be used
for state estimation of highly nonlinear plants. Furthermore, it
is also shown, through simulations, that the PFIWO algorithm is
robust against the shortcomings of the conventional PF.
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