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Abstract

A methodology to design guaranteed costH∞ controllers for a class of switched

systems with polynomial vector fields is proposed. To this end, we use sum

of squares programming techniques. In addition, instead of the customary

Carathéodory solutions, the analysis is performed in the framework of Fil-

ippov solutions which subsumes solutions with infinite switching in finite

time and sliding modes. Firstly, conditions assuring asymptotic stability of

Filippov solutions pertained to a switched system defined on semi-algebraic

sets are formulated. Accordingly, we derive a set of sum of squares feasibil-

ity tests leading to a stabilizing switching controller. Finally, we propose a

scheme to synthesize stabilizing switching controllers with a guaranteed cost

H∞ disturbance attenuation performance. The applicability of the proposed

methods is elucidated thorough simulation analysis.
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1. Introduction

Over the past decades, there has been a dramatic increase in research

on the subject of hybrid systems (see the expository books [1, 2] and the

journal articles [3–7]). In particular, a considerable amount of literature has

been devoted to the analysis of switched dynamical systems [8–15]. This

stems from the fact that switched systems can be more readily described

and analyzed by mathematical methodologies [16]. Generally, a switched

system can be characterized by a discontinuous differential equation whose

right-hand side accepts a family of indexed functions called subsystems. A

switched system may possess the state-dependent switching property, if each

subsystem is defined on a partition of the state-space; then, a switching

occurs whenever the trajectories of the system reach the boundary of these

partitions (also known as the switching surface).

Although, form a modeling perspective, switched models are intriguing,

the stability and control problem of switched system is not as convenient as

their mathematical description (see the survey papers [17, 18]). This stems

from the fact that though the dynamics of each subsystem alone is known,

the behavior of the trajectories of the overall switched system can be very

discrepant. In this regard, Branicky [19] demonstrated that one cannot infer

the stability of the overall switched system from the stability of each sub-

system. On the other hand, Liberzon [16] evinced that a felicitous switching

law may bring about stability, even if all subsystems are unstable. Hespanha

[20] proved that if the switches happen sufficiently slow, then the stability

of the switched system is assured. Furthermore, Leth and Wisniewski [21]
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conceded that a switched system with stable Carathéodory solutions, may

possess divergent Filippov solutions, thereby making the overall system un-

stable. This has shed light on the importance of the considering Filippov

solutions when dealing with switched systems. Following the same trend,

Ahmadi et. al. [22–24] proposed robust stability and control methodologies

for switched systems in the context of Filippov solutions.

During the last decade, efficacious techniques for implementing sum of

squares (SOS) decomposition of multivariable polynomials using convex op-

timization has been developed [25, 26]. Owing to its computational efficiency,

SOS programming has shown to be virtuous in analyzing a myriad of engi-

neering applications; for instance, [27] suggests an SOS based algorithm for

stability and robustness analysis of nonlinear systems via contraction met-

rics; [28] considered a nonlinear control method using robust SOS scheme

for uncertain hypersonic aircrafts; [29] is concerned with a model predictive

control strategy for input saturated polynomial systems using SOS program-

ming; [30] devises an SOS optimization based design algorithm for halfband

product filters for orthogonal wavelets; [31] brings forward a set of SOS fea-

sibility tests, which determine the stability of an uncertain gene regulatory

network; [32] proposes an SOS programming based method to calculate the

robust observability and controllability degree of linear time invariant sys-

tems with semi-algebraic uncertainty.

Previously, we have addressed the stability issue of nonlinear switched

systems defined on compact sets in the context of Filippov solutions [22],

based on mathematical tools from the theory of differential inclusions. Addi-

tionally, we demonstrated that if the subsystems consist of polynomial vector
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fields and if the subsystems are defined on semi-algebraic sets, the stability

analysis can be efficiently carried out using SOS programming. In the present

paper, we propose a guaranteed cost H∞ controller synthesis methodology for

switched systems defined on semi-algebraic sets established upon SOS pro-

gramming. We first bring forward SOS feasibility tests which determine a

stabilizing switching controller. Subsequently, we formulate conditions based

on SOS programming, which provide a switching controller with guaranteed

cost H∞ performance. These latter conditions include bilinear terms, for

which an appropriate iterative algorithm is devised. The validity of the pro-

posed methods is verified through a numerical example, as well.

The rest of the paper is organized as follows. The subsequent section

includes the notations and a number of preliminary definitions. Section 3

examines the problem of stabilizing switching controllers for switched sys-

tems defined on semi-algebraic sets. In Section 4, the gauranteed cost H∞

controller synthesis scheme is outlined. Section 5 discusses the applicability

of the proposed method through a simulation example. Finally, Section 6

concludes the paper.

2. Notations and Definitions

The notations adopted in this paper are described next. The set of pos-

itive real numbers is denoted by R≥0, the Euclidean vector norm on Rn by

‖ · ‖, the inner product by 〈·〉, and the closed ball of radius ε in Rn centered

at origin by Bnε . Denote by Pp×q(x) the class of p × q polynomial matrices

in x, and we drop the subscript when we simply mean the class of polyno-

mial functions. Accordingly, Psos(x) ⊂ P(x) signifies the class of polynomial
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functions in x with an SOS decomposition; i.e., p(x) ∈ Psos(x) if and only if

there are pi(x) ∈ P(x), i ∈ {1, . . . , k} such that p(x) = p2i (x) + · · · + p2k(x).

In addition, by a symmetric polynomial map Q(x) ∈ Pn×n(x), we imply that

Q(x) is symmetric for all x. We denote the interior of a set K by int(K), and

the boundary of K by bd(K); then, K = int(K) ∪ bd(K). Furthermore, the

closed convex hull of the set K is signified by co(K), and the set of all subsets

of K (power set of K) by 2K . For a continuously differentiable (C1) function

V (x), ∂V (x)
∂x

designates the column vector with first-order partial derivatives

of V (x).

Consider the class of n-dimensional nonlinear switched systems S =

{X ,Y ,U ,W , X, I,F ,G } wherein X ⊂ Rn, Y ⊂ Rm, U ⊂ Rnu , and W ⊂

Rnw are compact subsets of Euclidean spaces and define respectively the

state space, the output space, the input space and the disturbance space.

X = {Xi}i∈I is the set containing (closed) partitions of X with index set

I = {1, 2, 3, ..., N}. F = {Fi}i∈I and G = {Gi}i∈I are families of smooth

functions. Each of the functions Fi and Gi are determined respectively by

a triplet {Ai(x), Bi(x), Gi(x)} and a bi-tuple {Ci(x), Di(x)}. Furthermore,

Fi : Pi×U ×W → Rn; (x, u, w) 7→ {z ∈ Rn | z = Ai(x)x+Bi(x)u+Gi(x)w}

and Gi : Pi × U → Rm; (x, u) 7→ {z ∈ Rm | z = Ci(x)x + Di(x)u} with Pi

an open neighborhood of Xi. Note that X =
⋃
i∈I Xi, and int(Xi) 6= ∅ for

all Xi ∈ X. Also, denote Ĩ = {(i, j) ∈ I × I | Xi ∩ Xj 6= ∅, i 6= j} the set

of index pairs which determines the partitions with non-empty intersections;

hence, Xi ∩Xj = bd(Xi) ∪ bd(Xj) for all (i, j) ∈ Ĩ. We further assume that

each function w(t) belongs to L2[0,∞); i.e., the class of functions for which

‖w‖L2 =

(∫ ∞
0

w(t)Tw(t) dt

) 1
2
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is well-defined and finite.

Define the set valued maps F and G as

F : X × U ×W → 2Rn

; (x, u, w) 7→ {v ∈ Rn | v = Fi(x, u, w) if x ∈ Xi} (1)

G : X × U → 2Rm

; (x, u) 7→ {v ∈ Rm | v = Gi(x, u) if x ∈ Xi} (2)

Then, the global dynamics of the switched system is described by the follow-

ing differential inclusions

ẋ(t) ∈ F
(
x(t), u(t), w(t)

)
(3)

ẋ(t) ∈ co

(
F
(
x(t), u(t), w(t)

))
(4)

y(t) ∈ G(x(t), u(t)) (5)

The choice of whether differential inclusion (3) or (4) describe the dynamics

of the switched system depends on the nature of the motion to be consid-

ered. By a Carathéodory solution of differential inclusion (3) at ζ0 ∈ X , we

understand an absolutely continuous function [0, T ) → X ; t 7→ ζ(t) (T > 0)

which solves the following Cauchy problem

ζ̇(t) ∈ F
(
ζ(t), u(t), w(t)

)
, a.e., ζ(0) = ζ0

A Filippov solution to differential inclusion (3) at ζ0 ∈ X is an absolutely

continuous function [0, T )→ X ; t 7→ ζ(t) which solves the following Cauchy

problem

ζ̇(t) ∈ co
(
F
(
ζ(t), u(t), w(t)

))
, a.e., ζ(0) = ζ0

That is, an absolutely continuous solution to (4) with ζ0 ∈ X .

Our objective is to design a switching controller

u(x) ∈ K(x)

K : Rn → 2U ;x 7→ {s ∈ U | s = Ki(x)x if x ∈ Xi} (6)
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such that in addition to asymptotic stability of the Filippov solutions of (3)

assures that, for some η > 0 and a function W (x) (with some properties

that will be discussed later in this paper, e.g., W (0) = 0), the following

performance is always satisfied

‖y‖2L2 ≤ η2‖w‖2L2 +W (x0) (7)

Then, under zero initial conditions, the system is said to possess H∞ distur-

bance attenuation performance η.

In case of matrix inequalities, I denotes the unity matrix (the size of I can

be inferred from the context) and should be distinguished from the index set

I. In matrices, ? in place of a matrix entry amn means that amn = anm
T . By

Al(x), we denote the l’th row of a polynomial matrix A(x).

Let Li = {l1, l2, . . . , lsi} be the set of row indices ofHi(x) ≡
[
Bi(x) Gi(x)

]
whose corresponding rows are zero, i.e., H

lj
i (x) = 0, for j = 1, . . . lsi . Fur-

thermore, for Li defined as above, we use the notation x̂i = (xl1 , xl2 , . . . , xlsi ).

We will be explicitly concerned with switched systems defined on semi-

algebraic sets. In this case, each partition is determined by a semi-algebraic

set

Xi =
{
x ∈ X | χi(x) = 0, ξik(x) ≥ 0 for k ∈ Ni

}
, i ∈ I (8)

and each boundary is characterized by a variety

Xi ∩Xj =
{
x ∈ X | χij(x) = 0

}
, (i, j) ∈ Ĩ (9)

Remark that χi(x) could take the structure χi(x) = p21(x)+p22(x)+· · ·+p2n(x);

as a consequence, χi(x) = 0 implies p1(x) = p2(x) = · · · = pn(x) = 0.

In the sequel, we employ the next lemma from [33].
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Lemma 1 ([33]). Denote by
⊗

the Kronecker product. Suppose F (x) ∈

Pn×n(x) is symmetric and of degree 2d for all x ∈ Rn. In addition, let

Z(x) ∈ Pn×1(x) be a column vector of monomials of degree no greater than

d and consider the following conditions

(A) F (x) ≥ 0 for all x ∈ Rn

(B) vTF (x)v ∈ Psos(x, v), for any v ∈ Rn.

(C) There exists a positive semi-definite matrix Q such that vTF (x)v =

(v
⊗

Z(x))TQ(v
⊗

Z(x)), for any v ∈ Rn.

Then (A)⇐ (B) and (B)⇔ (C).

3. Stabilizing State-Feedback Controller Synthesis

In this section, we first derive a stability theorem for the class of switched

systems expounded in Section 2. Then, we formulate SOS conditions which

ensure the existence of a stabilizing state feedback law in the form of (6). At

this point, let us construct the following switched Lyapunov function

Φ : X → 2R;x 7→ {z ∈ R | z = Vi(x), if x ∈ Xi}, (10)

where

Vi(x) = xTQi(x̂
i)x

and such that

Vi(x) = Vj(x) for all x ∈ bd(Xi) ∪ bd(Xj) and all (i, j) ∈ Ĩ . (11)

Then, Φ is single-valued and locally Lipschitzean at any point x ∈ X (see

Fig. 1 for an illustration).
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x1

x2

V1 : X1 → R

V2 : X2 → R

V3 : X3 → R

V4 : X4 → R

Figure 1: At each partition of the state space X1–X4, a C1 function V1–V4 is assigned.

Theorem 1. Consider the a switched system S with Filippov solutions de-

scribed by (3)–(4). Suppose u ≡ 0 and w ≡ 0, and let v be an arbitrary

vector of dimension n. If there exist a family of symmetric polynomial maps

{Qi(x̂
i)}i∈I ⊂ Pn×n(x̂i), constants εi > 0, and {qik(x, v)}k∈Ni

⊂ Psos(x, v),

{wik(x, v)}k∈Ni
⊂ Psos(x, v) whose degree in v are equal to two , and εi(x, v) ∈

P(x, v), ρi(x, v) ∈ P(x, v), pij(x, v) ∈ P(x, v), and rij(x, v) ∈ P(x, v) whose

degree in v are two with i ∈ I and (i, j) ∈ Ĩ, such that

vT
(
Qi(x̂

i)− εiI
)
v − εi(x, v)χi(x)−

∑
k∈Ni

qik(x, v)ξik(x) ∈ Psos(x, v) (12)
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−vT
(
Ai(x)TQi(x̂

i) +Qi(x̂
i)Ai(x) +

∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Ali(x)x

))
v

−ρi(x, v)χi(x)−
∑
k∈Ni

wik(x, v)ξik(x) ∈ Psos(x, v) (13)

for all i ∈ I and

−vT
Aj(x)TQi(x̂

i) +Qi(x̂
i)Aj(x) +

∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alj(x)x

) v

−rij(x, v)χij(x) ∈ Psos(x, v) (14)

vTQi(x̂
i)v + pij(x, v)χij(x) = vTQj(x̂

j)v (15)

for all (i, j) ∈ Ĩ. Then, all of the Filippov solutions of (4) with u ≡ 0 and

w ≡ 0 are asymptotically stable at the origin.

Proof. This is a direct result of applying Proposition 10 and Proposition 12

in [22]. Note that the additional terms −
∑

k∈Ni
qik(x, v)ξik(x) and

−
∑

k∈Ni
wik(x, v)ξik(x) are derived from applying the generalized S-procedure

(see Section 3.3 in [22]), and−rij(x, v)γij(x), −εi(x, v)χi(x), and−ρi(x, v)χi(x)

are obtained using the Finsler’s Lemma. Condition (15) ensures that the lo-

cal Lyapunov functions are continuous along the boundaries. Conditions

(12)-(14) also correspond to (34)–(36) in [22].

Remark 1. The assumption on Qi to be only a function of x̂i is to avoid

nonlinear terms involved when computing the derivative of Qi with respect

to x.

Applying the proposed switching controller (6) to the system given by (3)-(5)

yields the controlled system S̃ given by

ẋ(t) ∈ F̃
(
x(t), w(t)

)
(16)
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ẋ(t) ∈ co
(
F̃
(
x(t), w(t)

))
(17)

y(t) ∈ G̃(x(t)) (18)

where

F̃ : X ×W → 2Rn

; (x,w) 7→ {v ∈ Rn | v = Aci(x)x+Gi(x)w if x ∈ Xi}

(19)

G̃ : X → 2Rm

;x 7→ {v ∈ Rm | v = Cci(x)x if x ∈ Xi} (20)

with

Aci(x) = Ai(x) +Bi(x)Ki(x)

Cci(x) = Ci(x) +Di(x)Ki(x) (21)

If we supplant Ai with Aci in the Theorem 1, we arrive at the following

conclusion.

Corollary 1. Consider the controlled switched system with Filippov solutions

S̃ as defined by (16) and (17). Assume w ≡ 0. Let v be an arbitrary vectors

of dimension n. Define

Ψi(x) = Ai(x)TQi(x̂
i) +Qi(x̂

i)Ai(x) +
∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Ali(x)x

)
+Ki(x)TBi(x)TQi(x̂

i) +Qi(x̂
i)Bi(x)Ki(x) (22)

Ψij(x) = Aj(x)TQi(x̂
i) +Qi(x̂

i)Aj(x) +
∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alj(x)x

)
+Kj(x)TBj(x)TQi(x̂

i) +Qi(x̂
i)Bj(x)Kj(x) (23)

If there exist a family of symmetric {Qi(x̂
i)}i∈I ⊂ Pn×n(x̂i), polynomial

matrices {Ki(x)}i∈I ⊂ Pnu×n(x), constants εi > 0, and {qik(x, v)}k∈Ni
⊂
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Psos(x, v), {wik(x, v)}k∈Ni
⊂ Psos(x, v) whose degree in v are equal to two ,

and εi(x, v) ∈ P(x, v), ρi(x, v) ∈ P(x, v), pij(x, v) ∈ P(x, v), and rij(x, v) ∈

P(x, v) whose degree in v are two with i ∈ I and (i, j) ∈ Ĩ, such that

vT
(
Qi(x̂

i)− εiI
)
v − εi(x, v)χi(x)−

∑
k∈Ni

qik(x, v)ξik(x) ∈ Psos(x, v) (24)

−vTΨi(x)v − ρi(x, v)χi(x)−
∑
k∈Ni

wik(x, v)ξik(x) ∈ Psos(x, v) (25)

for all i ∈ I and

−vTΨij(x)v − rij(x, v)χij(x) ∈ Psos(x, v) (26)

vTQi(x̂
i)v + pij(x, v)χij(x) = vTQj(x̂

j)v (27)

for all (i, j) ∈ Ĩ. Then, the switching controller synthesis (6) renders the

origin asymptotically stable.

However, it can be readily discerned that (25) and (26) include bilinear

terms including multiplication of the variables Ki(x) and Qi(x̂
i). We will not

treat this problem here and defer it until the end of the next section.

4. Guaranteed Cost H∞ Controller Synthesis

At this juncture, we are prepared to assert the main results of this paper;

i.e., to characterize a set of SOS conditions to ensure that, in addition to

asymptotic stability of the Filippov solutions, the performance objective (7)

is satisfied. Assume i0 ∈ I is the index satisfying x0 ∈ Xi0 .
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Theorem 2. Let S̃ be the controlled switched system with Filippov solutions

described by (16)–(18). Let v1 and v2 be two arbitrary vectors of dimension

n and 2n, respectively. Suppose

Ξi(x) = Aci(x)TQi(x̂
i) + Qi(x̂

i)Aci(x)

+ Cci(x)TCci(x) +
∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Alci(x)x

)
(28)

Ξij(x) = Acj(x)TQi(x̂
i) + Qi(x̂

i)Acj(x)

+ Ccj(x)TCcj(x) +
∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alcj(x)x

)
(29)

For a given η > 0, if there exist a family of symmetric polynomial maps

{Qi(x̂
i)}i∈I ⊂ Pn×n(x̂i), constants εi > 0, and {qik(x, v1)}k∈Ni

⊂ Psos(x, v1),

{wik(x, v2)}k∈Ni
⊂ Psos(x, v2) whose degree in v1 and v2 are equal to two,

and εi(x, v1) ∈ P(x, v1), ρi(x, v2) ∈ P(x, v2), pij(x, v1) ∈ P(x, v1), and

rij(x, v2) ∈ P(x, v2) whose degree in v1 and v2 are two with i ∈ I and

(i, j) ∈ Ĩ, such that

vT1
(
Qi(x̂

i)− εiI
)
v1 − εi(x, v1)χi(x)−

∑
k∈Ni

qik(x, v1)ξik(x) ∈ Psos(x, v1) (30)

−vT2

Ξi(x) Qi(x̂
i)Gi(x)TGi(x)

? −η2Gi(x)TGi(x)

 v2 − ρi(x, v2)χi(x)

−
∑
k∈Ni

wik(x, v2)ξik(x) ∈ Psos(x, v2)

(31)

for all i ∈ I and

−vT2

Ξij(x) Qi(x̂
i)Gj(x)TGj(x)

? −η2Gj(x)TGj(x)

 v2 − rij(x, v2)γij(x) ∈ Psos(x, v2)

(32)
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vT1 Qi(x̂
i)v1 + pij(x, v1)χij(x) = vT1 Qj(x̂

j)v1 (33)

for all (i, j) ∈ Ĩ. Then, the Filippov solutions of the switched system S̃ are

asymptotically stable at origin. Furthermore, the performance criterion (7)

is satisfied with W (x0) = xT0Qi0(x̂
i
0)x0.

Proof. (33) implies (11), and (30) is equivalent to (12). Utilizing Shur’s

complement theorem and removing the auxiliary terms from the Generalized

S-procedure, (31) and (32) reduces to

−vT
(
Aci(x)TQi(x̂

i) +Qi(x̂
i)Aci(x) +

∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Alci(x)x

)
+Cci(x)TCci(x) + η−2Qi(x̂

i)Gi(x)TGi(x)Qi(x̂
i)

)
v < 0 (34)

for all x ∈ int(Xi) with i ∈ I and

−vT
(
Acj(x)TQi(x̂

i) +Qi(x̂
i)Acj(x) +

∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alcj(x)x

)
+Ccj(x)TCcj(x) + η−2Qi(x̂

i)Gj(x)TGj(x)Qi(x̂
i)

)
v < 0 (35)

for all x ∈ bd(Xi)∪ bd(Xj) with (i, j) ∈ Ĩ. One can deduce that if the above

conditions hold so does (13) and (14). Hence, the Filippov solutions of (16)

are asymptotically stable at origin. Differentiating and integrating Φ with
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respect to t yields∫ ∞
0

dΦ

dt
dt =

∫ t1

0

[ (
wTG1(x)T + xTAc1(x)T

)
Q1(x̂

1)x

+xT
∑
l∈L1

∂Q1(x̂
1)

∂xl

(
Alc1(x)x

)
x

+xTQ1(x̂
1) (Ac1(x)x+G1(x)w)

]
dt+ . . .

+

∫ t2

t1

[ (
wTG2(x)T + xTAc2(x)T

)
Q2(x̂

2)x

+xT
∑
l∈L2

∂Q2(x̂
2)

∂xl

(
Alc2(x)x

)
x

+xTQ2(x̂
2) (Ac2(x)x+G2(x)w)

]
dt+ . . .

+
r∑
j=1

αj

{∫ tk

tk−1

[ (
wTGj(x)T + xTAcj(x)T

)
Qk(x̂

k)x

+xT
∑
l∈Lj

∂Qk(x̂
k)

∂xl

(
Alcj(x)x

)
x

+xTQk(x̂
k) (Acj(x)x+Gj(x)w)

]
dt

}
+ . . .

+
m∑
j=1

βj

{∫ th

th−1

[ (
wTGj(x)T + xTAcj(x)T

)
Qh(x̂

h)x

+xT
∑
l∈Lj

∂Qh(x̂
h)

∂xl

(
Alcj(x)x

)
x

+xTQh(x̂
h) (Acj(x)x+Gj(x)w)

]
dt

}
+ . . .

+

∫ ∞
tn

[ (
wTGn(x)T + xTAcn(x)T

)
Qn(x̂n)x

+xT
∑
l∈Ln

∂Qn(x̂n)

∂xl

(
Alcn(x)x

)
x

+xTQn(x̂n) (Acn(x)x+Gn(x)w)

]
dt (36)
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wherein αj,βj > 0 such that
∑n

j=1 αj = 1, and
∑n

j=1 βj = 1. m and

r are the number of neighboring cells to a boundary where the solutions

possess infinite switching in finite time (in the time intervals of [tk−1, tk] and

[th−1, th]), respectively. In the above formulations, without loss of generality,

it is assumed that the initial conditions are located in the partition X1 and

the motion includes both the interior of partitions as well as their boundaries.

For any x ∈ Xi from (34), it follows that∫ ti

ti−1

[ (
wTGi(x)T + xTAci(x)T

)
Qi(x̂

i)x

+xT
∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Alci(x)x

)
x

+xTQi(x̂
i) (Aci(x)x+Gi(x)w)

]
dt

=

∫ ti

ti−1

[
xT

(
Aci(x)TQi(x̂

1) +Qi(x̂
i)Aci(x) +

∑
l∈Li

∂Qi(x̂
i)

∂xl

(
Alci(x)x

)
x

)
x

+xTQi(x̂
i)Gi(x)w + wTGi(x)TQi(x̂

i)x

]
dt

<

∫ ti

ti−1

[
xT
(
−Cci(x)TCci(x)− η−2Qi(x̂

i)Gi(x)TGi(x)Qi(x̂
i)
)
x

+xTQi(x̂
i)Gi(x)w + wTGi(x)TQi(x̂

i)x

]
dt

=

∫ ti

ti−1

[
− yTy + xTQi(x̂

i)Gi(x)w + wTGi(x)TQi(x̂
i)x

−η−2xT
(
Qi(x̂

i)Gi(x)TGi(x)Qi(x̂
i)
)
x

+
(
ηw − η−1Gi(x)Qi(x̂

i)x
)T (

ηw − η−1Gi(x)Qi(x̂
i)x
)

−
(
ηw − η−1Gi(x)Qi(x̂

i)x
)T (

ηw − η−1Gi(x)Qi(x̂
i)x
) ]

dt

≤
∫ ti

ti−1

[
−yTy + η2wTw

]
dt
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Correspondingly,

n∑
k=1

αk

{∫ tj

tj−1

[ (
wTGk(x)T + xTAck(x)T

)
Qj(x̂

j)x

+xT
∑
l∈Lk

∂Qj(x̂
j)

∂xl

(
Alck(x)x

)
x

+xTQj(x̂
j) (Ack(x)x+Gk(x)w)

]
dt

=
n∑
k=1

αk

{∫ tj

tj−1

[
xT

(
Ack(x)TQj(x̂

1) +Qj(x̂
i)Ack(x) +

∑
l∈Lk

∂Qj(x̂
i)

∂xl

(
Alck(x)x

)
x

)
x

+xTQj(x̂
j)Gk(x)w + wTGk(x)TQj(x̂

i)x

]
dt

}
<

n∑
k=1

αk

{∫ tj

tj−1

[
xT
(
−Ck(x)TCk(x)− η−2Qj(x̂

j)Gk(x)TGk(x)Qj(x̂j)
)
x

+xTQj(x̂
i)Gk(x)w + wTGk(x)TQj(x̂

i)x

]
dt

}
≤

∫ tj

tj−1

[
− yTy −

n∑
k=1

αk

{
η−2xTQj(x̂

j)Gk(x)TGk(x)Qj(x̂j)x

+
(
ηw − η−1Gk(x)Qj(x̂

j)x
)T (

ηw − η−1Gk(x)Qj(x̂
j)x
)

−
(
ηw − η−1Gk(x)Qj(x̂

j)x
)T (

ηw − η−1Gk(x)Qj(x̂
j)x
)}]

dt

≤
∫ tj

tj−1

[
−yTy + η2wTw

]
dt
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From the above calculations, it can be discerned that∫ ∞
0

dΦ

dt
dt ≤

∫ t1

0

(−yTy + η2wTw)dt

+

∫ t2

t1

(−yTy + η2wTw)dt+ . . .

+

∫ tk

tk−1

(−yTy + η2wTw)dt+ . . .

+

∫ th

th−1

(−yTy + η2wTw)dt+ . . .

+

∫ ∞
tn

(−yTy + η2wTw)dt

which is simplified to

Φ
(
x(∞)

)
− Φ

(
x(0)

)
≤
∫ ∞
0

(−yTy + η2wTw)dt

Additionally, because the Filippov solutions of the system are asymptotically

stable at origin (as demonstrated earlier in this proof), we have x(∞) = 0.

Thus,

Φ(x0) ≤ −‖y‖2L2 + ‖w‖2L2

which with little manipulation is equivalent to (7) with W (x0) = Φ(x0) =

x0Qi0(x̂
i0
0 )x0. Consequently, the performance objective is also satisfied.

The subsequent corollary brings forward SOS programming conditions

to synthesize a switching controller satisfying our stability and performance

objectives.

Corollary 2. Let S̃ be a switched system with Filippov solutions subject to

disturbance w(t) ∈ L2[0,∞) as given by (16)–(18). Let v1 and v2 be two
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arbitrary vectors of dimension n and 3n, respectively. Define

Γi(x) = Ξi(x) +Ki(x)TBi(x)TQi(x̂
i) +Qi(x̂

i)Bi(x)Ki(x)

+Ci(x)TDi(x)Ki(x) +Ki(x)TDi(x)TCi(x) (37)

Γij(x) = Ξij(x) +Kj(x)TBj(x)TQi(x̂
i) +Qi(x̂

i)Bj(x)Kj(x)

+Cj(x)TDj(x)Kj(x) +Kj(x)TDj(x)TCj(x) (38)

Given a constant η > 0, if there exist a family of symmetric polynomial maps

{Qi(x̂
i)}i∈I ⊂ Pn×n(x̂i), constants εi > 0, and {qik(x, v1)}k∈Ni

⊂ Psos(x, v1),

{wik(x, v2)}k∈Ni
⊂ Psos(x, v2) whose degree in v1 and v2 are equal to two,

and εi(x, v1) ∈ P(x, v1), ρi(x, v2) ∈ P(x, v2), pij(x, v1) ∈ P(x, v1), and

rij(x, v2) ∈ P(x, v2) whose degree in v1 and v2 are two with i ∈ I and

(i, j) ∈ Ĩ, such that

vT1
(
Qi(x̂

i)− εiI
)
v1 − εi(x, v1)χi(x)−

∑
k∈Ni

qik(x, v1)ξik(x) ∈ Psos(x, v1) (39)

−vT2


Γi(x) Qi(x̂

i)Gi(x)TGi(x) Ki(x)TDi(x)T

? −η2Gi(x)TGi(x) 0

? ? −I

 v2
−ρi(x, v2)χi(x)−

∑
k∈Ni

wik(x, v2)ξik(x) ∈ Psos(x, v2) (40)

for all i ∈ I and

−vT2


Γij(x) Qi(x̂

i)Gj(x)TGj(x) Kj(x)TDj(x)T

? −η2Gj(x)TGj(x) 0

? ? −I

 v2
−rij(x, v2)χij(x) ∈ Psos(x, v2) (41)
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vT1 Qi(x̂
i)v1 + pij(x, v1)χij(x) = vT1 Qj(x̂

j)v1 (42)

for all (i, j) ∈ Ĩ. Then, the Filippov solutions of the switched system S̃ are

asymptotically stable at origin, and it holds that

‖y‖2L2 ≤ η2‖w‖2L2 + xT0Qi0(x̂
i
0)x0 for all x0 ∈ X

Proof. Equations (39) and (42) correspond to (30) and (33), respectively.

Substituting Aci and Cci in (35) yields

−vT
(

(Aj(x) +Bj(x)Kj(x))TQi(x̂
i) +Qi(x̂

i)(Aj(x) +Bj(x)Kj(x))

+
∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alj(x)x

)
+ (Cj(x) +Dj(x)Kj(x))T (Cj(x) +Dj(x)Kj(x))

+η−2Qi(x̂
i)Gj(x)TGj(x)Qi(x̂

i)

)
v < 0

for all x ∈ bd(Xi) ∪ bd(Xj). With some calculation, it reduces to

−vT
(
Aj(x)TQi(x̂

i) +Qi(x̂
i)Aj(x) +Kj(x)TBj(x)TQi(x̂

i)

+Qi(x̂
i)Bj(x)Kj(x) +

∑
l∈Lj

∂Qi(x̂
i)

∂xl

(
Alj(x)x

)
+ Cj(x)TCj(x)

+Cj(x)TDj(x)TKj(x) +Kj(x)TDj(x)TCj(x)

+η−2Qi(x̂
i)Gj(x)TGj(x)Qi(x̂

i) +Kj(x)TDj(x)TDj(x)Kj(x)

)
v < 0

which is equivalent to

−vT
(

Γij(x) + η−2Qi(x̂
i)Gj(x)TGj(x)Qi(x̂

i) +Kj(x)TDj(x)TDj(x)Kj(x)

)
v < 0

Exploiting Shur’s lemma, we obtain

−vT


Γij(x) Qi(x̂

i) Kj(x)TDj(x)T

? η2
(
Gj(x)TGj(x)

)−1
0

? ? I

 v < 0
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To avert infeasibility due to singularity of Gj(x)TGj(x) for some x, we use

the following congruence transformation
I 0 0

0 Gj(x)TGj(x) 0

0 0 I

×


Γij(x) Qi(x̂
i) Kj(x)TDj(x)T

? η2
(
Gj(x)TGj(x)

)−1
0

? ? −I



×


I 0 0

0 Gj(x)TGj(x) 0

0 0 I


T

=


Γij(x) Qi(x̂

i)Gj(x)TGj(x) Kj(x)TDj(x)T

? −η2Gj(x)TGj(x) 0

? ? −I


Therefore, if

vT


Γij(x) Qi(x̂

i)Gj(x)TGj(x) Kj(x)TDj(x)T

? −η2Gj(x)TGj(x) 0

? ? −I

 v < 0

holds for all x ∈ bd(Xi) ∪ bd(Xj) and all (i, j) ∈ Ĩ, (32) is satisfied as well.

In a similar fashion, it can be demonstrated that (40) is analogous to (31).

This completes the proof.

Remark 2. It is observed that the SOS feasibility tests (40) and (41) in

Corollary 2 are bilinear in the variables {Qi(x̂
i)}i∈I and {Ki(x)}i∈I . Bilinear

SOS programs have been previously introduced by Packard and collaborators

[34–36] in analyzing the region of attraction of nonlinear systems.

The following iterative algorithm is proposed to surmount the aforemen-

tioned bilinear terms in Corollary 2.
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• Initialization : Preset {εi}i∈I , {qik(x, v1)}k∈Ni
⊂ Psos(x, v1), {wik(x, v2)}k∈Ni

⊂

Psos(x, v2), εi(x, v1) ∈ P(x, v1), ρi(x, v2) ∈ P(x, v2), pij(x, v1) ∈ P(x, v1),

and rij(x, v2) ∈ P(x, v2) with i ∈ I and (i, j) ∈ Ĩ. Set iter = 0 and pre-

determine δ > 0 a small positive number. Select {K0
i }i∈I as controller

gains for the linearized model using a linear control design method e.g.

pole placement.

• Step Q : Given the set of controller gains {Kiter
i (x)}i∈I . Solve the

following SOS optimization problem

min{Qi(x̂i)}i∈I η

subject to (39)− (42)

Then, set {Qiter
i }i∈I = {Q∗i }i∈I (the superscript ∗ signifies the achieved

values from the optimization problem).

• Step K : Given the set of symmetric polynomial matrices {Qiter
i (x̂i)}i∈I .

Solve the following SOS optimization problem

min{Ki(x)}i∈I η

subject to (39)− (42)

Subsequently, set {Kiter+1
i (x)}i∈I = {K∗i (x)}i∈I and ηk+1 = η∗.

• Finalization : If |ηiter+1 − ηiter| ≤ δ, return {Kiter+1
i }i∈I , {Qiter

i }i∈I ,

and ηiter+1 as the solutions to the SOS problem. Otherwise, iter =

iter + 1 and go to Step Q.

Notice in particular that the attained value of η from the above algorithm

determines the best achievable H∞ performance of the switched system.
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5. Simulation Results

In the preceding section, we set out sufficient conditions and an algorithm

to synthesize guaranteed cost H∞ controllers for switched systems defined

on semi-algebraic sets. In what follows, we evaluate the proposed schemes

through simulation analysis.

Consider a switched system defined on semi-algebraic sets S defined by

(3)–(5) . Let X ⊂ R2. Suppose i ∈ I = {1, 2} and

X1 = {x ∈ X | −x22 + x31 ≥ 0}

X2 = {x ∈ X | x22 − x31 ≥ 0}

Thus, χ12(x) = x22 − x31 since χ12(x) = 0 accounts for X1 ∩ X2. The corre-

sponding system polynomial matrices are given by

A1(x) =

−2− x21 −5− x22
6 + x21 3− x22

 , B1(x) =

0

1

 , G1(x) =

 0

2 + x32



A2(x) =

x1 − x21 1

4 2

 , B2(x) =

1

0

 , G2(x) =

−6− 2x2

0


C1(x) = C2(x) =

[
x2 0

]
The simulations verify that the solutions of the uncontrolled system are un-

stable as illustrated in Fig. 2.

In order to exploit the suggested approach to design switching controllers,

the following parameters are preset

ε1 = ε2 = 0.01, and δ = 0.001
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The linearized system can be readily computed

Alinear1 =

−2 −5

6 3

 , Alinear2 =

0 1

4 2


with the sameB1 andB2 as given above. Using the pole-placement algorithm,

controller gains of

K0
1 =

[
−5.6 −8

]
, K0

2 =
[
−9 −8.5

]
were determined for pole locations of (−3,−4). Moreover, from the structure

of system matrices, it can be deduced that Q1(x1) and Q2(x2). It is worth

noting that if none of the rows of [Bi Gi] were zero, then Qi should be

assumed as a matrix whose entries are constant numbers (not polynomials in

x); otherwise, one has to face increased nonlinearity that even the suggested

methodologies is of no use.

The proposed H∞ controller synthesis algorithm as described in Section

4 was employed. Fig. 3 sketches the reduction of η with respect to number of

iterations. As it can be observed from the figure, the algorithm converges at

19 iterations. The SOS conditions were investigated based on SOSTOOLS

[37] toolbox in MATLAB R2010b. The algorithm took 89.2603 seconds on

Intel(R) Core(TM)2 Due CPU T7500 @2.20GHz and 3.00 GB of RAM.
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The solutions attained from the suggested algorithm were

η = 0.739

K1(x) =
[
0.04 2.62x22

]
, and K2(x) =

[
−1.75 52.66− 11.49x2

]
100Q1(x1) =

17.44 + 0.46x21 −6.67

−6.67 5.02

 , and

100Q2(x2) =

 −8.83 −11.03 + 0.05x2

−11.03 + 0.05x2 39.33

 ,
Thus, from Corollary 2, all Filippov solutions of the system are asymptot-

ically stable and the disturbance attenuation performance (7) is satisfied.

Fig. 4 portrays the solutions of the closed loop system in the absence of dis-

turbance (w ≡ 0). Notice in particular that the solutions with sliding modes

are also asymptotically stable.

In order to examine the disturbance mitigation performance of the pro-

posed methodology, a number of simulations were carried out that are de-

scribed next. The first disturbance signal that we employed was w(t) =

3 sin(2πt) with t ∈ [0, 10] (see Fig. 5). Fig. 6 illustrates the disturbance

attenuation performance of the system under zero initial conditions. Ac-

cording to Corollary 2, for the mentioned sinusoidal disturbance and zero

initial conditions, one obtains

‖y‖2L2 ≤ (0.739)2(45)⇒ ‖y‖2L2 ≤ 24.5754

The second applied signal was a square wave with duty cycle of 50 percent,

values belonging to {3,−1}, t ∈ [0, 10], and a period of 1 (see Fig. 7). Fig. 8

portrays the disturbance attenuation performance of the system under zero
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initial conditions. From Corollary 2, for the latter square wave disturbance

and with zero initial conditions, it holds that

‖y‖2L2 ≤ (0.739)2(50)⇒ ‖y‖2L2 ≤ 27.3061

The last disturbance signal that was exploited to essay the functionality of the

achieved controllers is a white Gaussian noise N (0, 9) defined on t ∈ [0, 10]

as depicted in Fig. 9. Fig. 10 demonstrates the disturbance mitigation per-

formance of the switched system under zero initial conditions. Interestingly,

the standard deviation of the output signal is approximately 0.007 which is

considerably less than that of the input disturbance. Furthermore, the same

set of simulations were launched for non-zero initial conditions. These results

are given in Figs. 11-13. Once again, Corollary 2 implies that

‖y‖2L2 ≤ (0.739)2(45) + 4.1222⇒ ‖y‖2L2 ≤ 28.6979

for the sinusoidal disturbance and initial conditions of x0 = (1,−3), and

‖y‖2L2 ≤ (0.739)2(50) + 0.5246⇒ ‖y‖2L2 ≤ 27.8307

for the square wave disturbance and initial conditions of x0 = (−1, 1). It is

also worth mentioning that the control signals are discontinuous when the

states of the switched system are in the vicinity of an attractive bound-

ary. Taken together, these results confirm the asymptotic stability and the

guaranteed cost H∞ disturbance attenuation performance of the closed loop

system.

6. Conclusions

In this paper, the aim was to develop a method to determine guaranteed

cost H∞ controllers for switched systems defined on semi-algebraic sets in the
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context of Filippov solutions. The results given in this study was formulated

in terms of SOS programming which can be efficiently applied based on

available computational tools. Further research might explore other control

performance criterions such as H2 or mixed H2–H∞. Another issue that was

not addressed in this study was the influence of uncertainty in the switched

system dynamics when the H∞ controller is applied. In particular, semi-

algebraic uncertainty seems to be an appropriate choice in this setting.
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Figure 2: The trajectories of the uncontrolled switched system. The dashed lines illustrate

the boundaries.
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Figure 3: The reduction of η as the algorithm proceeds.
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Figure 4: The trajectories of the closed loop switched system.
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Figure 5: The applied sinusoidal disturbance.
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Figure 6: The responses of the closed loop system to disturbance under zero initial condi-

tions. Phase portrait (top), output signal (middle), control input (bottom).
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Figure 7: The applied square wave disturbance.
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Figure 8: The responses of the closed loop system to disturbance under zero initial condi-

tions. Phase portrait (top), output signal (middle), control input (bottom).
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Figure 9: The applied Gaussian random disturbance.
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Figure 10: The responses of the closed loop system to disturbance under zero initial

conditions. Phase portrait (top), output signal (middle), control input (bottom).
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Figure 11: The responses of the closed loop system to disturbance with non-zero initial

conditions. Phase portrait (top), output signal (middle), control input (bottom).
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Figure 12: The responses of the closed loop system to disturbance with non-zero initial

conditions. Phase portrait (top), output signal (middle), control input (bottom).
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Figure 13: The responses of the closed loop system to disturbance with non-zero initial

conditions. Phase portrait (top), output signal (middle), control input (bottom).
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