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Abstract— This paper investigates input-output properties
of systems described by partial differential equations (PDEs).
Analogous to systems described by ordinary differential equa-
tions (ODEs), dissipation inequalities are used to establish
input-output properties for PDE systems. Dissipation inequali-
ties pertaining to passivity, induced L

2-norm, reachability, and
input-to-state stability (ISS) are formulated. For PDE systems
with polynomial data, the dissipation inequalities are solved
via polynomial optimization. The results are illustrated with an
example.

I. INTRODUCTION

In distributed parameter systems (PDE systems), the state
is a function of both space and time. Numerous phenomena
in the real world are modeled by PDE systems (see [1],
[2], [3] for examples from Magnetohydrodynamics, elastic
beams, fluid flows, and Tokamaks). Despite the modeling
capacity of PDEs and abundant applications, they possess
several analytical challenges pertaining to the fact that
solutions of PDE systems belong to infinite-dimensional
(function) spaces. For instance, the stability of trajectories [4]
and input-output properties for a PDE system depends on the
norm one considers.

Dissipation inequalities characterize different input-output
properties of dynamical systems in terms of suitable storage
functions/functionals and supply rates [5]. One major virtue
of the dissipation inequalities is that, whenever elements of
interconnections of dynamical systems are characterized by
dissipation inequalities, properties of the interconnection can
be obtained [6]. Solutions to dissipation inequalities were
obtained with convex optimization in the context of linear
ODE systems in [7] and, more recently, for nonlinear ODE
systems with polynomial vector fields [8].

In the context of PDE systems, numerical solutions to
dissipation inequalities have been proposed only recently.
In [9], for linear time-varying hyperbolic PDE systems, an
ISS dissipation inequality was proposed and the weighted
L2 functional was considered as a storage functional. ISS
Lyapunov functionals were proposed in [10] for a class of
nonlinear parabolic partial differential equations. ISS has also
been studied in [11] with a focus on semi-linear parabolic
PDEs, and in [12] for semi-linear diffusion equation, where
the concept of ISS-Lyapunov functional, given by weighted
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L2-norm, was introduced and used to formulate ISS es-
timates for a model of magnetic flux profile in Tokamak
plasma. More general ISS definitions were presented in [13],
wherein a small gain theorem for interconnection of the PDE
systems was formulated.

Once the formulation of dissipation inequalities in terms
of storage functionals and given supply rates is obtained,
their solution (the computation of storage functionals) is, in
general, difficult. Therefore, most of the studies carried out
so far are based on ad hoc construction methods. However,
numerical solutions can be expected for certain classes
of storage functionals. In order to make the challenging
computation of storage functionals more general (for the
class of PDEs with polynomial data), we take advantage of
the results in [14], where a methodology for solving integral
inequalities is proposed.

The objective of this paper is to provide a framework for
using dissipation inequalities for a class of PDE systems and
to propose algorithmic construction methods based on con-
vex optimization. We consider different input-output proper-
ties in the L2-norm. To this end, we formulate the dissipation
inequalities for passivity, induced L2-norm boundedness,
reachability and ISS. The virtue of the proposed method is
that, given a PDE with polynomial data, one is able to use
semi-definite programming in terms of sum-of-squares (SOS)
programs to construct certificates for different properties. An
example is used to illustrate the results.

The paper is organized as follows. The next section
presents the notation and the problem formulation. In Sec-
tion III, the dissipation inequalities for PDE systems are
formulated. Section IV discusses the construction method
based on semi-definite programming. An example is given
in Section V to illustrate the proposed methods. Finally,
Section VI concludes the paper and provides directions for
future research.

II. PRELIMINARIES

A. Notation

The n-dimensional Euclidean space is denoted by Rn. The
space of n × n symmetric real matrices is denoted by Sn.
The identity matrix is denoted by I . A domain Ω ⊂ Rn is
a connected, open subset of Rn, and Ω is the closure of set
Ω. The boundary ∂Ω of set Ω is defined as Ω \ Ω with \
denoting set subtraction. The space of p-th power integrable
functions defined over Ω is denoted LpΩ endowed with the
norm

‖(·)‖Lp

Ω
=

(
∫

Ω

(·)p dx

)
1
p

,
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for 1 ≤ p <∞, and

‖(·)‖L∞

Ω
= sup

x∈Ω
|(·)|,

for p = ∞. Also, we denote by L2
Ω,[t0,T ], with t0 ≥ 0, the

space of square integrable functions in x ∈ Ω and t ∈ [t0, T ]
with the norm

‖(·)‖L2
Ω,[t0,T)

=

(

∫

Ω

∫ T

t0

(·)T (·) dtdx

)
1
2

.

The space of k-times continuous differentiable functions
defined on Ω is denoted by Ck(Ω). If p ∈ C1, then ∂xp is
used to denote the derivative of p with respect to variable x,
i.e. ∂x := ∂

∂x
. In addition, we adopt Schwartz’s multi-index

notation. For u ∈ Ck,n, α ∈ Nn0 , define

Dαu :=

(

u1,
∂u1

∂x
, . . . ,

∂α1u1

∂xα1
, . . . , un,

∂un

∂x
, . . . ,

∂αnun

∂xαn

)

.

A continuous strictly increasing function k : [0, a) →
R≥0, satisfying k(0) = 0, belongs to class K. If a = ∞
and limx→∞ k(x) = ∞, k belongs to class K∞. We recall
that, for any class K function, the inverse exists and belongs
to K. Furthermore, for any positive a and b and class K
function k, we have [15, Inequality (12)]

k(a+ b) ≤ k(2a) + k(2b).

For a symmetric matrix function S(x), we define λ(S) =
infx∈Ω |λmin (S(x)) |, where λmin : Sn → R is
the minimum eigenvalue function. Similarly, λ̄(S) =
supx∈Ω |λmax (S(x)) |, where λmax : Sn → R is the
maximum eigenvalue function.

B. Problem Formulation

We consider the class of PDE systems described by

∂tu = F (x,Dαuu,Dαdd),

y = H(x,Dδu), ∀x ∈ Ω, t > t0 (1)

where, u ∈ L2,n
Ω , d ∈ L2,m

Ω , and y ∈ L2,q
Ω are dependent vari-

ables (defined over both space and time) representing states,
inputs, and outputs, respectively. Independent variables t and
x represent time and space, respectively. It is assumed that
PDE (1) is well-posed; i.e., a solution to (1) exists and is
unique.

Definition 1: An equilibrium ψ(x) of (1), satisfying
F (x,Dαuψ, 0) = 0, is

• stable in L2
Ω, if for any ε > 0, ∃δ = δ(ε) > 0 such that

for all t ≥ t0

‖u(x, 0) − ψ(x)‖L2
Ω
< δ ⇒ ‖u(x, t) − ψ(x)‖L2

Ω
< ε,

• asymptotically stable in L2
Ω, if it is stable and ∃δ > 0

such that

‖u(x, 0)−ψ(x)‖L2
Ω
< δ ⇒ lim

t→∞
‖u(x, t)−ψ(x)‖L2

Ω
= 0,

• exponentially stable in L2
Ω, if there exists a λ > 0, such

that for all t ≥ t0

‖u(x, t) − ψ(x)‖2
L2

Ω
≤ ‖u(x, 0) − ψ(x)‖2

L2
Ω
e−λ(t−t0).

In the sequel, we consider stability to the null solution,
i.e. ψ(x) = 0, ∀x ∈ Ω in Definition 1.

In order to study input-output properties of system (1), we
define properties as follows.

Definition 2 (input-output Properties):

A. Passivity: System (1) satisfies the following inequality

0 ≤

∫ ∞

t0

∫

Ω

dT (x, t)y(x, t) dxdt, (2)

subject to u(x, t0) = 0, ∀x ∈ Ω.
B. Reachability: The solutions of (1) satisfy

‖u(x, T )‖L2
Ω
≤ β

(

‖d(x, t)‖L2
Ω,[t0,T )

)

, ∀T > 0 (3)

for β ∈ K∞ and subject to u(x, t0) = 0, ∀x ∈ Ω.
C. Induced L2-norm Boundedness: For some γ > 0,

‖y(x, t)‖L2
Ω,[t0,∞)

≤ γ‖d(x, t)‖L2
Ω,[t0,∞)

(4)

subject to zero initial conditions u(x, t0) = 0, ∀x ∈ Ω.
D. Input-to-State Stability: For some scalar ψ > 0, func-

tions β, β̃, χ ∈ K∞, and σ ∈ K, it holds that

‖u(x, t)‖L2
Ω
≤ β

(

e−ψ(t−t0)χ
(

‖u(x, t0)‖L2
Ω

)

)

+ β̃

(

sup
τ∈[t0,t)

(

∫

Ω

σ
(

|d(x, τ)|
)

dx
)

)

, (5)

for all t > t0.
Remark 1: The above definition of passivity is taken from

[16], where a passivity-based design strategy for flow control
is presented. �

Remark 2: In item C in Definition 2, for PDE system (1),
we are interested in estimating upper bounds on γ∗ > 0
defined as

γ∗ = sup
0<‖d‖

L2
Ω,[t0,∞)

<∞

‖y‖L2
Ω,[t0,∞)

‖d‖L2
Ω,[t0,∞)

, (6)

which is the induced L2
Ω-norm of the system. �

Remark 3: It is worth noting that the ISS property (5)
assures exponential convergence to the null solution in L2

Ω

when d ≡ 0. Moreover, as t → ∞, the first term on the
right-hand side of (5) vanishes yielding

lim
t→∞

‖u(x, t)‖L2
Ω
≤ β

(
∫

Ω

‖σ(|d(x, t)|)‖L∞

[t0 ,∞)
dx

)

≤ β

(
∫

Ω

σ(‖d(x, t)‖L∞

[t0,∞)
) dx

)

, (7)

wherein, the fact that σ and β ∈ K is used. Hence, when
the input is bounded in L∞

[t0,∞) (this encompasses persistent
inputs), the state u is bounded in L2

Ω sense. This is analogous
to the ISS property for ODE systems [17]. �

In the sequel, we use the concept of zero-state detectability
for PDE systems, which is defined next (for the case of ODE
systems refer to [18, p. 362]).

Definition 3: A system is zero-state detectable (ZSD), if
y = 0 implies u = 0.
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Remark 4: Zero-state detectability imposes constraints on
H in (1) (H(x,Dδu) = 0 ⇒ u = 0). In the special case of
H(x,Dδu) = h(x)u, this is equivalent to ∄x ∈ Ω such that
h(x) = 0, thereby y = 0 ⇒ u = 0. �

In the following section, we derive conditions in terms of
dissipation inequalities for properties A-D to hold.

III. DISSIPATION INEQUALITIES FOR PDES

In the next theorem, we formulate the dissipation inequal-
ities associated with properties A-D in Definition 2.

Theorem 1: Consider the PDE system described by (1).
If there exist a positive semidefinite storage functional S(u),
scalars γ, ψ > 0, and functions β1, β2 ∈ K∞, α, σ ∈ K
satisfying ψ|U | ≤ α(|U |), such that
I)

∂tS(u) ≤

∫

Ω

dT (x, t)y(x, t) dx, (8)

II)
β1(‖u(x, t)‖L2

Ω
) ≤ S(u), (9)

∂tS(u) ≤ γ2

∫

Ω

dT (x, t)d(x, t) dx, (10)

III)
y ≡ 0 ⇒ u ≡ 0, (11)

∂tS(u) ≤ −

∫

Ω

yT (x, t)y(x, t) dx

+γ2

∫

Ω

dT (x, t)d(x, t) dx, (12)

IV)

β1(‖u(x, t)‖L2
Ω
) ≤ S(u) ≤ β2(‖u(x, t)‖L2

Ω
), (13)

∂tS(u) ≤ −α(S(u)) +

∫

Ω

σ(|d(x, t)|) dx, (14)

for all t > t0, then, respectively, system (1)
I) satisfies the passivity property (2),
II) satisfies the reachability property (3) with β(·) =
β−1

1 (γ(·)),
III) is asymptotically stable and its induced L2-norm is
bounded by γ in (4).
IV) is ISS and satisfies (5) with χ = β2, β(·) = β−1

1 ◦ 2(·)
and β̃(·) = β−1

1 ◦ 2
ψ

(·).
Proof: Each item is proven as follows:

I) Integrating both sides of (8) over time from t0 to ∞ yields
∫ ∞

t0

∂tS(u) dt ≤

∫ ∞

t0

∫

Ω

dT y dxdt.

That is,

lim
t→∞

S (u(x, t)) − S (u(x, t0)) ≤

∫ ∞

t0

∫

Ω

dT y dxdt.

By hypothesis, S(u) is positive semidefinite. Hence, for
u(x, t0) = 0, we have S(u(x, t0)) = 0. Moreover,
limt→∞ S (u(x, t))) ≥ 0. Therefore, we obtain the passivity
estimate (2).

II) Integrating both sides of (10) over time from t0 to T

yields
∫ T

t0

∂tS(u) ≤ γ

∫ T

t0

∫

Ω

dT (x, t)d(x, t) dxdt.

That is,

S(u(x, T )) − S(u(x, t0)) ≤ γ‖d‖L2
Ω,[t0,T)

.

Noting that, with u(x, t0) = 0, from (9), we have

β1(‖u(x, T )‖L2
Ω
) ≤ S(u(x, T )) ≤ γ‖d‖L2

Ω,[t0,T)
.

Since β1 ∈ K∞, its inverse exists and belongs to K∞. Thus,

‖u(x, T )‖L2
Ω
≤ β−1

1

(

γ‖d‖L2
Ω,[t0,T)

)

.

Therefore, an estimate of the reachable set in term of
‖d‖L2

Ω,[t0,T)
is attained.

III) Subject to zero inputs d ≡ 0, (12) becomes

∂tS(u) ≤ −

∫

Ω

yT y dx (15)

Inequality (15) implies that the time derivative of the storage
functional S(u) is negative semidefinite. Moreover, condition
(11) is equivalent to system (1) being ZSD. Thus, ∂tS(u) =
0 only if u = 0. Hence, from LaSalle’s invariance princi-
ple [19, Theorem 3.64, p. 161], it follows that u converges
to the null solution u = 0 asymptotically.
Furthermore, by integrating both sides of (12) from t0 to ∞,
we obtain
∫ ∞

t0

∂tS(u) dt ≤

−

∫ ∞

t0

∫

Ω

yT y dxdt+ γ2

∫ ∞

t0

∫

Ω

dTd dxdt.

That is,

lim
t→∞

S(u(x, t)) − S(u(x, t0)) ≤

−

∫ ∞

t0

∫

Ω

yT y dxdt+ γ2

∫ ∞

t0

∫

Ω

dT d dxdt.

Since S(·) is positive semidefinite and u(x, t0) = 0, x ∈ Ω,
we have

lim
t→∞

S(u(x, t)) ≤ −

∫ ∞

t0

∫

Ω

yT y dxdt+

∫ ∞

t0

∫

Ω

dTd dxdt,

and we obtain
∫ ∞

t0

∫

Ω

yT y dxdt ≤ γ2

∫ ∞

t0

∫

Ω

dT d dxdt,

which is identical to (4).
IV) By rearranging the terms in (14) and using the assump-
tion that ψ|U | ≤ α(|U |), we have

∂tS(u) + ψS(u) ≤

∫

Ω

σ(|d|) dx. (16)
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With the strictly increasing function eψ(t−t0), we have

eψ(t−t0) (∂tS(u) + ψS(u)) ≤ eψ(t−t0)

∫

Ω

σ(|d|) dx.

Then, we have

d

dt

(

eψ(t−t0)S
)

≤ eψ(t−t0)

∫

Ω

σ(|d|) dx. (17)

Integrating both sides of inequality (17) from t0 to t gives

eψ(t−t0)S(u(x, t)) − S(u(x, t0))

≤

∫ t

t0

eψ(τ−t0)

(
∫

Ω

σ(|d(x, τ)|) dx

)

dτ

≤

(
∫ t

t0

eψ(τ−t0) dτ

)

sup
τ∈[t0,t)

(
∫

Ω

σ(|d(x, τ)|) dx

)

≤
1

ψ
(eψ(t−t0) − 1) sup

τ∈[t0,t)

(
∫

Ω

σ(|d(x, τ)|) dx

)

≤
eψ(t−t0)

ψ
sup

τ∈[t0,t)

(
∫

Ω

σ(|d(x, τ)|) dx

)

, (18)

where Hölder’s inequality1 is used in the second inequality
above. Dividing the terms above by the positive term eψ(t−t0)

gives

S(u(x, t)) ≤ e−ψ(t−t0)S(u(x, t0))

+
1

ψ
sup

τ∈[t0,t)

(
∫

Ω

σ(|d(x, τ)|) dx

)

.

Using (13), we infer that

β1(‖u(x, t)‖L2
Ω
) ≤ e−ψ(t−t0)β2(u(x, t0))

+
1

ψ
sup

τ∈[t0,t)

(
∫

Ω

σ(|d(x, τ)|) dx

)

.

Since β1 ∈ K∞, its inverse exists and belongs to K∞. Hence,

‖u(x, t)‖L2
Ω
≤ β−1

1

(

2e−ψ(t−t0)β2(u(x, t0))

)

+ β−1
1

(

2

ψ
sup

τ∈[t0,t)

(

∫

Ω

σ(|d(x, τ)|) dx
)

)

.

It suffices to let χ = β2, β(·) = β−1
1 ◦ 2(·) and

β̃(·) = β−1
1 ◦ 2

ψ
(·).

IV. COMPUTATION OF STORAGE FUNCTIONALS

For computational purposes, the following structure is
considered as a candidate storage functional to check the
dissipation inequalities given in Theorem 1

S(u) =
1

2

∫

Ω

uTP (x)u dx (19)

1Let p, q ∈ [1,∞] satisfying 1

p
+ 1

q
= 1. Then, for all measurable

functions f and g, it holds that

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq

wherein, P (x) : Ω → S is a symmetric positive definite
polynomial matrix function for all x ∈ Ω. This storage
functional candidate satisfies

1

2
λ(P )‖u‖2

L2
Ω
≤ S(u) ≤

1

2
λ̄(P )‖u‖2

L2
Ω
. (20)

Therefore, S
1
2 (u) is equivalent to the L2-norm.

Remark 5: From (20), it follows that (9) and (13) are
satisfied, respectively, with β1(·) = λ(P )

2 (·)2, β−1
1 (·) =

√

2
λ(P ) (·), and β2(·) = λ̄(P )

2 (·)2. �

Let η = γ2. For reachability analysis, we solve the
following minimization problem

Problem 1:

minimize η

subject to (10), ν2I < P (x), (21)

where, ν is a constant. In this case, the reachability esti-
mate (3) transforms to

‖u(x, T )‖L2
Ω
≤
γ

ν
‖d‖L2

Ω,[t0,T )
, ∀T > 0. (22)

Analogously, for induced L2-norm, the following minimiza-
tion problem is solved

Problem 2:

minimize η

subject to (12). (23)

When adopting the storage functional structure (19) for
ISS, it is possible to check the condition

∂tS(u) ≤ −

∫

Ω

uTα(x)u dx+

∫

Ω

σ(|d(x, t)|) dx,

instead of (14), where α : Ω → Sn is a symmetric positive
definite polynomial function for all x ∈ Ω. In this case, the
ISS estimate translates to

‖u(x, t)‖L2
Ω
≤
(

e
−

λ(α)
λ(P ) (t−t0)

(

‖u(x, t0)‖
2
L2

Ω

))

1
2

+

(

1

λ(α)
sup

τ∈[t0,t)

(

∫

Ω

σ(|d(x, τ)|) dx
)

)
1
2

. (24)

A. Convex Formulation

Provided that the problem data are polynomial in the
dependent variables, one can formulate convex optimiza-
tion problems (SOS programs) to solve the inequalities in
Theorem 1. In the following, we summarize the approach
given in [14] to solve integral inequalities with polynomial
integrands. We treat integral inequalities of the type

∫

Ω

[

Dαu

Dβd

]T

M(x)

[

Dαu

Dβd

]

dx ≥ 0, (25)

where M : Ω → SdM with
dM =

∑n

i=1(1 + αi) +
∑m

j=1(1 + βj). The entries of the

vector
[

(Dαu)T (Dβd)T
]T

in the quadratic expression
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are not independent, and can be related via the Fundamental
Theorem of Calculus as follows
[

Dα−1u(1, t)
Dβ−1d(1, t)

]T

H(1)

[

Dα−1u(1, t)
Dβ−1d(1, t)

]

−

[

Dα−1u(0, t)
Dβ−1d(0, t)

]T

H(0)

[

Dα−1u(0, t)
Dβ−1d(0, t)

]

=

∫

Ω

d

dx

(

[

Dαu

Dβd

]T

H(x)

[

Dαu

Dβd

]

)

dx

:=

∫

Ω

[

Dαu

Dβd

]T

H̄(x)

[

Dαu

Dβd

]

dx, (26)

where H : Ω → SdM .
Therefore, given a subspace of Hilbert space in which

(u, d) is defined such as

B(B) =

{

(u, d)

∣

∣

∣

∣

B









Dα−1u(1, t)
Dβ−1d(1, t)
Dα−1u(0, t)
Dβ−1d(0, t)









= 0

}

, (27)

for some BT ∈ RdB with dB = 2
(

∑n

i=1 αi +
∑m

j=1 βj

)

,
the next result follows.

Lemma 1: If ∃H(x) ∈ C1 such that

M(x) + H̄(x) ≥ 0, ∀x ∈ Ω, (28)

with M(x) as in (25) and H̄(x) as in (26) and

[

Dα−1u(1, t)
Dβ−1d(1, t)

]T

H(1)

[

Dα−1u(1, t)
Dβ−1d(1, t)

]

−

[

Dα−1u(0, t)
Dβ−1d(0, t)

]T

H(0)

[

Dα−1u(0, t)
Dβ−1d(0, t)

]

≤ 0,

∀(u, d) ∈ B(B), (29)

then inequality (25) holds for all (u, d) ∈ B(B).
Proof: See [14].

Testing whether (28) holds can be performed by semi-
definite programming [20], [21]. In this regard, Putinar’s
Positivstellensatz [22, Theorem 2.14] is used to formulate
the associated polynomial positivity tests that can be handled
by semi-definite programming.

Remark 6: The advantage of the above method is that,
once the dissipation inequalities are formulated with poly-
nomial integrands, we can use convex optimization to check
the inequalities and construct the certificates. �

V. NUMERICAL EXAMPLE

This section illustrates the application of the dissipation
inequalities to a PDE system given by the heat equation with
a reaction term.

A. Example : Heat Equation with Reaction Term

Consider the following PDE system

∂tu = ∂2
xu+ λ(x)u + ǫ(x)d, ∀x ∈ (0, 1) and ∀t ≥ 0

y = u, (30)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

x

λ
(x
)
=

λ
c
−
2
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Fig. 1: The spatially varying coefficients for Equation (30).

TABLE I: Reachability analysis results for Equation (30).
λ

π2 0 0.2 0.4 0.6 0.8
γ 5.76 6.79 8.62 12.46 29.71

TABLE II: Induced L2-norm results for Equation (30) sub-
ject to constant coefficients.

λ

π2 0 0.2 0.3 0.35 0.39
γ2 0.0560 0.1876 0.5465 1.296 6.158

Total Time (s) 16.87 18.09 18.35 16.89 18.23

TABLE III: Induced L2-norm results for Equation (30)
subject to spatially varying coefficients.

λc 8 9 10 11 12 13
γ2 6.503 6.987 4.612 5.989 7.676 10.261

Total Time (s) 16.87 18.09 18.35 16.89 18.23

subject to u(0, t) = u(1, t) = 0 for all t ≥ 0.
For d = 0, the system is exponentially stable for
λ(x) = λ0 < π2 [23, p. 11]. For passivity analysis, let
ǫ(x) = 1 and λ(x) = λ0. Applying condition (8) in
Theorem 1, certificates could be found that passivity property
holds for λ0 < 0.2π2. Therefore, the upper bound of a
constant coefficient λ0 for which certificates of passivity
could be found is smaller than the bound for stability.

In case of reachability analysis, let ǫ(x) = 100x(1−x) and
λ = 0. With this choice of the function ǫ(x), the uniform
(over the domain) input d has its maximum amplification
at x = 0.5. The polynomial P (x) is set to 1, so that the
Lyapunov functional represents the L2

Ω-norm of solutions.
Table I provides the attained results. As expected, for larger
values of parameter λ, as the system approaches the insta-
bility bound, the reachable set is enlarged.

In case of induced L2-norm, certificates could not be
found for L2-norm boundedness for λ(x) = λ0 > 0.4π2

independently of the degree of the involved polynomials.
Table II presents the results from the numerical experiments.
It can be deduced from the table that, from λ0 = 0.3π2 to
λ0 = 0.4π2, the induced L2-gain increases. At this point,
take λ(x) = λc − 24x + 24x2 and ǫ(x) = 100x(1 − x).
Figure 1 depicts the spatially varying parameter λ(x) with
different values of λc. As it can be observed, for λc ∈
{10, 11, 12, 13}, the coefficients exceed the stability bound
for λ when it is constant; i.e., λ(x) = λ0 = π2. Table III
summarizes the obtained results.
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Fig. 2: ISS certificates for Equation (30) (with λ = 0.2π2).

Finally, certificates for ISS are studied. The experiments
were performed with construction of polynomials P (x),
α(x), and σ(u) to certify ISS property. It turned out that
certificates for ISS property could be constructed for λ(x) =
λ0 ≤ 0.5π2. Fig. 2 presents the results obtained from
numerical experiments for λ0 = 0.2π2.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We proposed a method to characterize the input-output
properties of PDE systems with in-domain inputs and out-
puts, by formulating the problem using a set of dissipation in-
equalities. For PDEs with polynomial data in dependent and
independent variables, certificates for input-output properties
have been constructed by convex optimization. An example
illustrated the results.

B. Future Work

In several scenarios, one is interested in evaluating a
system property, which may require the cumbersome task of
computing the numerical solution. For instance, in applica-
tions in fluid mechanics, it is desirable to study the effect of
perturbations on the forces acting on a body and computing
the solutions may be highly computationally demanding. We
believe that the use of dissipation inequalities may help to
eliminate the need for computing the solutions. In this study,
we considered in-domain perturbations. One can formulate
input-output bounds when the inputs are applied to the PDE
system through boundaries. Moreover, interconnections and
derivation of small-gain theorems and passivity properties are
currently under study. In particular, we are interested in the
interconnections of ODE and PDE systems with interconnec-
tion at the boundaries. Another interesting problem currently
under study is to compute bounds on output functionals of
PDE systems using convex optimization.

REFERENCES

[1] A. Gahlawat, E. Witrant, M. Peet, and M. Alamir, “Bootstrap current
optimization in Tokamaks using sum-of-squares polynomials,” in
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
Dec 2012, pp. 4359–4365.

[2] F. Castillo, E. Witrant, C. Prieur, and L. Dugard, “Boundary observers
for linear and quasi-linear hyperbolic systems with application to flow
control,” Automatica, vol. 49, no. 11, pp. 3180 – 3188, 2013.

[3] E. Schuster, L. Luo, and M. Krstic, “MHD channel flow control in
2D: Mixing enhancement by boundary feedback,” Automatica, vol. 44,
no. 10, pp. 2498 – 2507, 2008.

[4] A. Papachristodoulou and M. Peet, “On the analysis of systems
described by classes of partial differential equations,” in Decision and
Control, 2006 45th IEEE Conference on, 2006, pp. 747–752.

[5] J. C. Willems, “Dissipative dynamical systems part I: General theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–
351, 1972.
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