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Abstract— We propose a method for computing bounds on
output functionals of a class of time-dependent PDEs. To this
end, we introduce barrier functionals for PDE systems. By
defining appropriate unsafe sets and optimization problems,
we formulate an output functional bound estimation approach
based on barrier functionals. In the case of polynomial data,
sum of squares (SOS) programming is used to construct the
barrier functionals and thus to compute bounds on the output
functionals via semidefinite programs (SDPs). An example is
given to illustrate the results.

I. INTRODUCTION

A very large class of systems is described by partial

differential equations (PDEs), which include derivatives with

respect to both space and time. To name a few, mechanics

of fluid flows [1], elastic beams [2], and the magnetic flux

profile in a tokamak [3], [4].

In many engineering design problems, one may merely

be interested in computing a functional of the solution to the

underlying PDE rather than the solution itself (see the review

article [5] for a number of applications in structural mechan-

ics). For instance, the far-field pattern in electromagnetics

and acoustics [6] and energy release rate in elasticity theory

[7] are both functionals of the solutions to the governing

PDEs.

The ubiquity of applications has motivated the researchers

into developing computational algorithms for output func-

tional approximation. In [8], an augmented Lagrangian-

based approach is proposed for calculation of lower and

upper bounds to linear output functionals of coercive PDEs.

In [6], adjoint and defect methods for obtaining estimates

of linear output functionals for a class of steady (time-

independent) PDEs are suggested. In [9], the authors for-

mulate an a posteriori bound methodology for linear output

functionals of finite element solutions to linear coercive

PDEs. Adjoint and defect methods for computing estimates

of the error in integral functionals of solutions to steady

linear PDEs are discussed in [10]. In [11], an SDP-based

bound estimation approach for linear output functionals of

linear elliptic PDEs, based on the moments problem, is

formulated.

However, most of the methods proposed to date require

finite element approximations of the solution, which is sus-

ceptible to inherent discretization errors. Also, the computa-
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tional burden increases as the accuracy of an approximated

solution is improved. Furthermore, it is not clear whether

an attained bound from finite element approximations on

the output functionals is an upper or lower bound estimate.

Consequently, we need certificates to verify an obtained

bound (see [7], [12] for finite element based methods with

certificates for linear/quadratic output functionals of steady

linear elliptic PDEs). We show that one approach to certify

an obtained bound is through the use of barrier certificates.

Barrier certificates [13] were first introduced for model

invalidation of ordinary differential equations (ODEs) with

polynomial vector fields and have been used to address safety

verification of nonlinear and hybrid systems [14], safety

verification of a life support system [15], and reachability

analysis of complex biological networks [16].

This paper proposes a framework to compute bounds on

output functionals of a class of time-dependent PDEs using

SDPs, without the need to approximate the solutions. We em-

ploy barrier functionals, which are functionals of dependent

and independent variables. We show how different output

functionals can be converted into the functional structure

suitable for the formulations given in this paper in terms of

integral inequalities. The integral inequalities are then solved

using the results in [17], [18] which have been applied in [19]

for solving dissipation inequalities for PDEs. For the case of

polynomial PDEs and polynomial output functionals (in both

dependent and independent variables), SOS programming

can be used to construct the barrier functionals and therefore

to compute upper bounds. This reduces the problem to

solving SDPs. The proposed upper bound estimation method

is illustrated with an example.

The rest of the paper is organized as follows. In the next

section, we give a motivating example and formulate the

problem under study. In Section III, we briefly discuss the

method developed in [17] for studying integral inequalities

based on SDPs. Section IV considers the bound estimation

method using barrier functionals. In Section V, we illustrate

the proposed results using an example. Finally, Section VI

concludes the paper and gives directions for future research.

Notation:

The n-dimensional Euclidean space is denoted by Rn and

the space of nonnegative reals by R≥0. The n-dimensional

space of positive integers is denoted by Nn, and the n-

dimensional space of non-negative integers is denoted by

Nn
0 . The set of symmetric n × n matrices is denoted by

Sn. The notation M ′ denotes the transpose of matrix M .

A domain Ω is a subset of R, and Ω is the closure of set

Ω. The boundary ∂Ω of set Ω is defined as Ω \ Ω with \
denoting set subtraction. The space of k-times continuous
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differentiable functions defined on Ω is denoted by Ck(Ω).
For a multivariable function f(x, y), we use the notation

f ∈ Ck[x] to show k-times continuous differentiability of f

with respect to variable x. If p ∈ C1(Ω), then ∂xp denotes the

derivative of p with respect to variable x ∈ Ω, i.e. ∂x := ∂
∂x

.

In addition, we adopt Schwartz’s multi-index notation. For

u ∈ Cα(Ω), α ∈ Nn
0 , define

Dαu := (u1, ∂xu1, . . . , ∂
α1

x u1, . . . , un, ∂xun, . . . , ∂
αn

x un) .

We denote the ring of polynomials with real coefficients by

R[x], and the ring of polynomials with a sum-of-squares

decomposition by Σ[x] ⊂ R[x]. A polynomial p(x) ∈ Σ[x]
if ∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such that p(x) =
∑nd

i=1 p
2
i (x). Hence, p(x) is clearly non-negative. The set of

polynomials {pi}
nd

i=1 is called SOS decomposition of p(x).
The converse does not hold in general, that is, there exist

non-negative polynomials which do not have an SOS decom-

position [20]. To test whether an SOS decomposition exists

for a given polynomial, one can solve an SDP (see [21], [20],

[22]).

II. MOTIVATING EXAMPLE AND PROBLEM

FORMULATION

Next, we present a motivating example that is referred to

throughout the paper.

A. Motivating Example:

The heat distribution over a heated rod is described by

∂tu = k∂2
xu+ f(t, x, u), x ∈ Ω, t > 0 (1)

where Ω = [0, 1], k > 0 is the thermal conductivity, and

f(t, x, u) is the forcing, representing either a heat sink or a

heat source. The initial heat distribution is u(0, x) = u0(x).
We are interested in estimating bounds on the heat flux

emanating from the boundary x = 0; i.e., the time dependent

quantity

y(t) = k∂xu(t, 0), t > 0. (2)

The available approaches for finding bounds on (2) rely

on methods for approximating the solution to (1) and then

computing (2). In addition, some existing methods require

convexity of the output functional y(t).

B. Problem Formulation:

Consider the class of PDE systems governed by

∂tu(t, x) = F (t, x,Dαu(t, x)), x ∈ Ω, t > 0 (3)

y(t) = Gu, t ≥ 0 (4)

subject to u(0, x) = u0(x) and boundary conditions given

by

Q

[

Dα−1u(t, 1)
Dα−1u(t, 0)

]

= 0 (5)

with Q being a matrix of appropriate dimension and

F ∈ R[t, x,Dαu]. Define the following set with the Sobolev

norm as the restriction of Hilbert space to the space of

functions u satisfying boundary conditions (5)

Us(Q) :=

{

u ∈ Cα−1(Ω) | Q

[

Dα−1u(t, 1)
Dα−1u(t, 0)

]

= 0

}

.

(6)

In the sequel, we assume Ω = [0, 1]1, and the well-posedness

of (3) subject to (5). Let β ≤ α. Output functional (4) is

defined by the operator G which is of the form

Gu = G1

(

t,Dβu(t, x)
)

+

∫ t

0

G2

(

τ,Dβu(τ, x)
)

dτ, x ∈ Ω, t > 0, (7)

wherein, {Gi}i=1,2 are given by

Gi(t,D
βu) = g1(t, x,D

βu(t, x))

+

∫

Ω̃

g2(t, θ,D
βu(t, θ)) dθ,

x ∈ Ω, t > 0, i = 1, 2 (8)

with gi ∈ R[t, x,Dβu], i = 1, 2 and Ω̃ ⊆ Ω. In this study,

we discuss the cases where either G1 = 0 or G2 = 0. The

functional given by (4), (7), and (8) represents an output

functional either evaluated

A. at a single point inside the domain (g2 = 0),

B. over a subset of the domain (g1 = 0 and Ω̃ ⊂ Ω)

C. over the whole domain (g1 = 0 and Ω̃ = Ω).

We transform output functionals A-B to the output func-

tional structure C, which we refer as full integral form in

the sequel. This structure is consistent with the method for

solving integral inequalities outlined in the next section. The

transformation methods are discussed in Appendix A.

The problem we want to solve can be stated as follows.

Problem 1: Given PDE (3) with initial condition u0 ∈ U0

and boundary conditions (5), and a scalar T ≥ 0, compute

γ ∈ R such that y(T ) ≤ γ, where y is given in (4).

III. INTEGRAL INEQUALITIES

We propose a method to solve Problem 1 which requires

the solution of integral inequalities. This section briefly

presents the results of [17], in which, conditions for the

verification of integral inequalities, defined in a bounded

interval, were proposed.

Consider the following inequality

F =

∫ 1

0

(Dαu)′F (t, x)(Dαu) dx

−
[

(Dα−1u(t, 1))′F1(t)(D
α−1u(t, 1))

−(Dα−1u(t, 0))′F0(t)(D
α−1u(t, 0))

]

≥ 0.
(9)

with F : R≥0 × [0, 1] → Snα , nα =
∑n

i=1 αi,

Fi(t) : R≥0 → Snα−1 , nα−1 =
∑n

i=1(αi − 1), i = 0, 1 and

the dependent variable u belong to US(Q) as in (6).

1Remark that any bounded domain on the real line can be mapped to
[0,1] using an appropriate change of variables.
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In the following, we show how to account for u ∈ US(Q)
when solving (9). The lemma below establishes a relation

between the values at the boundary u(t, 1) and u(t, 0)
and the integrand and is a straightforward application of

the Fundamental Theorem of Calculus. It will be used to

introduce extra terms in the integral in (9).

Lemma 1: Consider a matrix function H(t, x) ∈ C1[x],
H : R≥0 × [0, 1] → Snα−1 . We have

∫ 1

0

d

dx

[

(Dα−1u)′H(t, x)(Dα−1u)
]

dx

=
∫ 1

0
(Dα−1u)′ ∂H(t,x)

∂x
(Dα−1u)

+ 2(Dα−1u)′H(t, x)(Dαu) dx
= (Dα−1u(t, 1))′H(t, 1)(Dα−1u(t, 1))

− (Dα−1u(t, 0))′H(t, 0)(Dα−1u(t, 0)).

(10)

In order to write terms in (10) in a compact form, define

the matrix function H̄(x) ∈ C1[x], H̄ : R≥0 × [0, 1] → S
nα

to be the matrix satisfying

(Dαu)′H̄(t, x)(Dαu)

:= (Dα−1u)′
[

∂H(t, x)

∂x
(Dα−1u) + 2H(t, x)(Dαu)

]

.

(11)

Therefore, from (10), we can deduce that

0 =

∫ 1

0

(Dαu)′H̄(t, x)(Dαu) dx

−
[

(Dα−1u(t, 1))′H(t, 1)(Dα−1u(t, 1))

−(Dα−1u(t, 0))′H(t, 0)(Dα−1u(t, 0))
]

. (12)

Then, adding the above expression to (9) yields

F =

∫ 1

0

(Dαu)′
[

F (t, x) + H̄(t, x)
]

(Dαu) dx

−
[

(Dα−1u(t, 1))′ (H(t, 1) + F1(t)) (D
α−1u(t, 1))

−(Dα−1u(t, 0))′ (H(t, 0) + F0(t)) (D
α−1u(t, 0))

]

. (13)

With the above expression, we can then formulate conditions

to verify inequality (9) for u satisfying (6) as follows.

Proposition 1: Let T ∈ R≥0. If

F (t, x) + H̄(t, x) ≥ 0, ∀t ∈ [0, T ], x ∈ [0, 1], (14)

and

(Dα−1u(t, 1))′ (H(t, 1) + F1(t)) (D
α−1u(t, 1))

− (Dα−1u(t, 0))′ (H(t, 0) + F0(t)) (D
α−1u(t, 0)) ≤ 0,

∀u ∈ Us(Q) (15)

then F ≥ 0 for all u ∈ Us(Q) and t ∈ [0, T ].

IV. BARRIER FUNCTIONALS

We are interested in finding barrier certificates to check

whether the output functional y as in (4) satisfies y(T ) ≤ γ

for some γ > 0 and T > 0, e.g., y(T ) = k∂xu(T, 0) in the

motivating example of Section II. Let UT = {u | y(T ) > γ}.

The set UT defines a subset of function spaces. At this

point, we observe that checking whether y(T ) ≤ γ can be

performed via an invalidation or safety verification method.

The key step is to find certificates that there is no solution

u(t, x) to (3) starting at u0(x) ∈ U0 such that u(T, x) ∈ UT .

The next theorem asserts that barrier functionals can be used

as certificates for upper bounds on output functionals.

Theorem 1: Consider the PDE system described by (3)

subject to boundary conditions (5) and initial condition

u0(x) ∈ U0 ⊂ U ⊆ US(Q), where US(Q) is defined in (6).

Assume u ∈ U ⊆ US(Q). Let

UT =

{

u ∈ U |

y(T ) =

∫ 1

0

g(T, x,Dβu(T, x)) dx > γ

}

, (16)

with β ≤ α as in (3), define the unsafe set. If there exists

a barrier functional B(t,Dβu) ∈ C1[t,Dβu], such that the

following conditions hold

B(T,Dβu(T, x))−B(0, Dβu0(x)) > 0,

∀u(T, x) ∈ UT , ∀u0 ∈ U0 (17)

(∂DβuB)DβF (t, x,Dαu)+∂tB ≤ 0, ∀t ∈ [0, T ], ∀u ∈ U ,
(18)

then it follows that there is no solution u(t, x) of (3) such

that u(0, x) = u0(x) ∈ U0 and u(T, x) ∈ UT for T > 0. In

other words, it holds that y(T ) ≤ γ.

Proof: The proof is omitted for brevity.

Remark 1: The definition of the set UT in Theorem 1

can be different depending on the application. The particular

choice for UT in (16) is due to the bound estimation problem

under study in this research.

Remark 2: From Theorem 1, we can compute upper

bounds on y(T ) by solving minimization problem (19) where

u(T, x), u(t, x) ∈ US(Q).
Thus far, output functionals of type (7) with G2 = 0 were

considered. In some applications, one might be interested in

output functionals of type (7) with G1 = 0. For example,

referring to the motivating example in Section II, we might

be interested in the following quantity which represents the

average temperature of the heated rod for time T > 0

y(T ) =

∫ T

0

∫

Ω

u(t, x) dxdt.

In other words, inequalities of the following type are sought

y(T ) =

∫ T

0

∫ 1

0

g(t, x,Dβu(t, x)) dxdt ≤ γ∗. (20)

Obtaining bounds for this type of output functionals can also

be addressed as delineated in the next corollary.

Corollary 1: Consider the PDE system described

by (3) with boundary conditions (5) and initial condition

u0(x) ∈ U0 ⊂ U ⊆ US(Q), where US(Q) is defined in (6).

Assume u ∈ U ⊆ US(Q). Let

U[0,T ] =

{

(t, u) ∈ [0, T ]× U |

∫ 1

0

g(t, x,Dβu(t, x)) dx > ∂tγ(t)

}

, (21)
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minimize (γ)

subject to

B(T,Dβu(T, x))−B(0, Dβu0) > 0 for
∫ 1

0

(

g(T, x,Dβu(T, x))− γ
)

dx > 0,

− (∂DβuB)
(

∂tD
βu
)

− ∂tB ≥ 0 for t(T − t) > 0. (19)

with β ≤ α as in (3), define the unsafe set. If there exists a

barrier functional B(t,Dβu) ∈ C1[t,Dβu], such that

B(t,Dβu(t, x))−B(0, Dβu0(x)) > 0,

∀u ∈ U[0,T ], ∀u0 ∈ U0, ∀t ∈ [0, T ], (22)

and (18) are satisfied, then it follows that there is no

solution u(t, x) of (3) such that u(0, x) = u0(x) ∈ U0 and

u(t, x) ∈ U[0,T ] for t ∈ [0, T ]. Hence, it holds that y(T ) ≤ γ⋆

with y(T ) given by (20) and γ⋆ = γ(T )− γ(0).
Proof: This is a consequence of Theorem 1. If there

exists a function B(t,Dβu(t, x)) satisfying (22) and (18),

then, from Theorem 1, we conclude that there is no solution

u(t, x) of (3) satisfying u(t, x) ∈ U[0,T ] for t ∈ [0, T ]. That

is, it holds that
∫ 1

0

g(t, x,Dβu(t, x)) dx ≤ ∂tγ(t), ∀t ∈ [0, T ]. (23)

Integrating both sides of (23) from 0 to T yields

y(T ) =

∫ T

0

∫ 1

0

g(t, x,Dβu(t, x)) dxdt

≤

∫ T

0

∂tγ(t) dt = γ(T )− γ(0). (24)

This completes the proof.

Remark 3: We can compute bounds on γ∗ = γ(T )−γ(0)
via an optimization problem as follows. If there exists a

solution γ∗ = γ(T )−γ(0) to the minimization problem (25)

with u(t, x) ∈ US(Q), then the following inequality holds

∫ T

0

∫ 1

0

g(t, x,Dβu(t, x)) dxdt ≤ γ∗. (26)

Remark 4: In optimization problem (25), the unsafe set

is a problem variable and is parametrized for each time t ∈
[0, T ] according to (21). The resulting function B may not

be a barrier for set

U =

{

u ∈ US(Q) |

∫ T

0

∫ 1

0

g(t, x,Dβu(t, x)) dxdt ≤ γ∗

}

.

However, the set described in (21) can be used to compute

the bound as in (20).

In order to formulate conditions of Theorem 1 and Corol-

lary 1 in terms of integral inequalities, we consider the

following structure for barrier functionals

B(t,Dβu) =

∫ 1

0

b(t, x,Dβu) dx. (27)

where b ∈ R[t, x,Dβu].

Remark 5: The order β of partial derivatives of the de-

pendent variables with respect to x in b(t, x,Dβu) should be

the same as the output functional y. This is due to the fact

that the barrier functionals serve as barriers in the function

space defined by the output functionals. For instance, for the

output functional y(t) =
∫ 1

0

(

u2(t, x) +
(

∂2
xu(t, x)

)2
)

dx,

the barrier functional should be of order 1 in u, i.e., β = 1.

V. EXAMPLE

In this section, we describe how to implement the proposed

results using SOS programming by a simple example:

• First, the output functional under study is transformed

into the full integral form (Appendix A).

• Second, depending on the type of output functionals,

the unsafe set is defined as either (16) or (21).

• Finally, the barrier functional of the appropriate struc-

ture is used to find bounds on the output functionals

(Remark 5).

A. SOS Formulation

Consider (1) and output functional (2). Let

f(t, x, u) = f(u) and k = 1, i.e.

∂tu = ∂2
xu+ f(u), x ∈ [0, 1], t > 0 (28)

y(T ) = ∂xu(T, 0), T > 0 (29)

subject to u(0, x) = u0(x) and Q
[

u(t,1)
u(t,0)

]

= 0. We are

interested in bounding y(T ). Let us transform the output

functional to the full integral form using the methods given

in Appendix A. From (A.3), it follows that

y(T ) =
−1

p(0)

∫ 1

0

(

(∂xp(x))∂xu(T, x)+p(x)∂2
xu(T, x)

)

dx,

for some polynomial p such that p(1) = 0. Setting

p(0) = −1 yields

y(T ) =

∫ 1

0

(

(∂xp(x))∂xu(T, x) + p(x)∂2
xu(T, x)

)

dx,

which is a full integral form for the output functional

∂xu(T, 0). As the next step, we seek certificates showing

that no solution belongs to

UT =

{

u ∈ US(Q) |

∫ 1

0

(

(∂xp(x))∂xu(T, x)

+ p(x)∂2
xu(T, x)− γ

)

dx > 0

}
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minimize (γ(T )− γ(0))

subject to

B(t,Dβu(t, x))−B(0, Dβu0) > 0 for
∫ 1

0

(

g(t, x,Dβu(t, x))− ∂tγ(t)
)

dx > 0 and t(T − t) > 0,

− (∂DβuB)
(

∂tD
βu
)

− ∂tB ≥ 0 for t(T − t) > 0. (25)

at time T > 0. Applying Theorem 1 in [23], for fixed γ and

p(x), Theorem 1 can be reformulated as follows. If there

exist a function b(t, x,D1u) such that

b(T, x,D1u(T, x))− b(0, x,D1u0(x))

− l1(x,D
2u(T, x))x(1 − x)

− l2

(

(∂xp(x))∂xu(T, x) + p(x)∂2
xu(T, x)− γ

)

+D2u(T, x)H̄1(T, x)D
2u(T, x) ∈ Σ

[

x,D2u(T, x)
]

(30)

and

− (∂D1ub)D
1(∂2

xu+ f(u))− ∂tb

− l3(x, t,D
3u)t(T − t)− l4(x, t,D

3u)x(1 − x)

+D3uH̄2(t, x)D
3u ∈ Σ

[

x, t,D3u
]

(31)

for some l1, l3, l4 ∈ Σ, l2 > 0 and {H̄i}i=1,2 as in (11),

then y(T ) = ∂xu(T, 0) ≤ γ. Also, conditions (30) and (31)

correspond to (17) and (18), respectively. Notice that for l2
fixed and both γ and p(x) as variables, SOS inequalities (30)

and (31) are convex and one can minimize γ subject to (30)

and (31) which is the same as the minimization problem (19).

The SOS formulation for Corollary 1 can be carried out in

the same way.

B. Numerical Results

The numerical results given in this section were obtained

using SOSTOOLS v. 3.00 [24] and the resulting SDPs were

solved using SeDuMi v.1.02 [25].

Consider PDE (28) with f(u) = λu subject to ini-

tial conditions u0(x) = πx(1 − x) and boundary conditions

u(t, 0) = u(t, 1) = 0 yielding Q = [ 1 0 0 0
0 0 1 0 ]. The sys-

tem is known to be convergent to the null solution just

for λ ≤ π2 [26, p. 11]. Here, for illustration purposes, let

λ = 10π2. Notice that convergence of the solutions of the

PDE to the null solution is not required in the proposed

method using barrier functionals.

We investigate the bounds on the heat flux emanating from

the boundary x = 0 at time T > 0 given by

y(T ) = ∂xu(T, 0).

For T = 0.01, using the proposed method, we obtained the

following bound y(0.01) ≤ 3.3418. The actual heat flux

from numerical experiments is y(0.01) = 3.212. Next, we

consider the following output functional

y(T ) =

∫ T

0

∂xu(τ, 0) dτ, (32)

with T = 0.05. Using the method presented in Section

IV, the obtained upper bound was y(0.05) ≤ 1.2335. In

comparison, the value obtained through numerical simulation

and numerical integration is y(0.05) ≈ 1.21124.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We proposed a methodology to upper-bound output func-

tionals of a class of PDEs by barrier functionals. We trans-

formed different output functionals to the structure suitable

for our analyses through splitting the domain and integration-

by-parts. For the case of polynomial dependence on both

independent and dependent variables, we used SOS program-

ming to construct the barrier functionals by solving SDPs.

The proposed method was illustrated with an example.

B. Future Work

Numerous applications require studying the output func-

tionals of systems defined in two or three dimensional

domains. Therefore, a formulation analogous to the one

discussed in Section III for integral inequalities over domains

of higher dimension is required. Furthermore, for some

PDEs, the barrier functionals may be conservative. Hence,

one may need to adopt special structures for the barrier

functionals. Lastly, the application of barrier functionals is

not limited to bounding output functionals. Future research

can explore other open problems such as safety verification.
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APPENDIX

A. Transformation to full integral form

1) Boundaries: Consider functional (8) with g2 = 0
and x ∈ {0, 1}, i.e.

y(t) = g (t, 0, Dαu(t, 0)) , x0 ∈ ∂Ω. (A.1)

For some p ∈ C1(Ω) satisfying p(1) = 0, we obtain

p(0)g (t, 0, Dαu(t, 0)) = −

∫ 1

0

∂x(pg) dx. (A.2)

Therefore,

y(t) =
−1

p(0)

∫ 1

0

((∂xp)g + p(∂xg)) dx. (A.3)

In addition, if the functional was defined on the boundary

x = 1, assuming p(0) = 0, we obtain

y(t) =
1

p(1)

∫ 1

0

((∂xp)g + p(∂xg)) dx. (A.4)

Notice that, by fixing the values of p(0) and p(1) in (A.3)

and (A.4), respectively, we can use equations (A.3) and (A.4)

to study functionals evaluated at the boundaries using integral

inequalities in the full integral form.

2) Single Points Inside the Domain: At this point, con-

sider functional (8) with g2 = 0, i.e.

y(t) = g
(

t, x0, D
βu(t, x0)

)

, x0 ∈ Ω. (A.5)

We split the domain into two subsets Ω1 = (0, x0] and

Ω2 = [x0, 1). Then, PDE (3) can be represented by the

following coupled PDEs

∂tu =

{

F (t, x,Dαu), x ∈ Ω1

F (t, x,Dαu), x ∈ Ω2

subject to Dα−1u(t, x0) = Dα−1u(t, x0) and (5). Using

appropriate change of variables, we obtain
{

∂tu1 = F1(t, x,D
αu1), x ∈ Ω

∂tu2 = F2(t, x,D
αu2), x ∈ Ω

subject to 1
x
α−1

0

Dα−1u1(t, 1) = 1
(1−x0)α−1D

α−1u2(t, 0)
2

and

Q

[

1
x
α−1

0

Dα−1u2(t, 1)
1

(1−x0)α−1D
α−1u1(t, 0)

]

= 0,

where Q is as in (5), F1 = F (t, x, 1

x
β

0

Dβu1), and

F2 = F (t, x, 1
(1−x0)β

Dβu2). Then, functional (A.5) can be

changed to either of the following

y(t) = g

(

t, x0,
1

x
β
0

Dβu1(t, 1)

)

,

y(t) = g

(

t, x0,
1

(1− x0)β
Dβu2(t, 0)

)

,

and the method proposed for points at the boundaries de-

scribed in previous subsection can be used.

Transformations for subsets of the domain can be carried

out similarly.

2To simplify the notation, we define

1

xα−1

0

Dα−1u =

(

u,
1

x0

∂xu, . . . ,
1

xα−1

0

∂α−1

x
u

)

′

.
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