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Abstract

In this dissertation, computational methods based on convex optimization, for the analysis

of systems described by partial differential equations (PDEs), are proposed.

Firstly, motivated by the integral inequalities encountered in the Lyapunov stability

analysis of PDEs, a method based on sum-of-squares (SOS) programming is proposed to

verify integral inequalities with polynomial integrands. This method parallels the schemes

based on linear matrix inequalities (LMIs) for the analysis of linear systems and approaches

based on SOS programming for the analysis of polynomial nonlinear systems.

Secondly, dissipation inequalities for input-state/output analysis of PDE systems are

formulated. Similar to the case of systems described by ordinary differential equations

(ODEs), it is demonstrated that the dissipation inequalities can be used to check input-

state/output properties, such as passivity, reachability, induced norms, and input-to-state

stability (ISS). Furthermore, it is shown that the proposed input-state/output analysis method

based on dissipation inequalities allows one to infer properties of interconnected PDE-PDE

or PDE-ODE systems. In this regard, interconnections at the boundaries and interconnec-

tions over the domain are considered. It is also shown that an appropriate choice of the stor-

age functional structure casts the dissipation inequalities into integral inequalities, which

can be checked via convex optimization.

Thirdly, a method is proposed for safety verification of PDE systems. That is, the prob-

lem of checking whether all the solutions of a PDE, starting from a given set of initial

conditions, do not enter some undesired or unsafe set. The method hinges on an extension
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of barrier certificates to infinite-dimensional systems. To this end, a functional of the states

of the PDE called the barrier functional is introduced. If this functional satisfies two in-

equalities along the solutions of the PDE, then the safety of the solutions is verified. If the

barrier functional takes the form of an integral functional, the inequalities convert to inte-

gral inequalities that can be checked using convex optimization in the case of polynomial

data. Furthermore, the proposed safety verification method is used for bounding output

functionals of PDEs.

Finally, the tools developed in this dissertation are applied to study the stability and

input-output analysis problems of fluid flows. In particular, incompressible viscous flows

with constant perturbations in one of the coordinates are studied. The stability and input-

output analysis is based on Lyapunov and dissipativity theories, respectively, and subsumes

exponential stability, energy amplification, worst case input amplification and ISS. To the

author’s knowledge, this is the first time that ISS of flow models is being studied. It is

shown that an appropriate choice of the Lyapunov/storage functional leads to integral in-

equalities with quadratic integrands. For polynomial base flows and polynomial data on

flow geometry, the integral inequalities can be solved using convex optimization. This

analysis includes both channel flows and pipe flows. For illustration, the proposed method

is used for input-output analysis of several flows, including Taylor-Couette flow, plane

Couette flow, plane Poiseuille flow and (pipe) Hagen-Poiseuille flow.

We conclude this dissertation with a summary and an account for future research direc-

tions.

v



Contents

1 Introduction 1
1.1 Stability Analysis of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Dissipation Inequalities for Input-Output Analysis of PDEs . . . . . . . . . 9

1.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Barrier Functionals for the Analysis of PDEs . . . . . . . . . . . . . . . . 11
1.3.1 Safety Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Bounding Output Functionals of PDEs . . . . . . . . . . . . . . . 12
1.3.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Input-Output Analysis of Fluid Flows . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 List of Publications from The Dissertation . . . . . . . . . . . . . . . . . . 16
1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 21
2.1 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Stability of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Some Useful Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Sum-of-Squares Programming . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Stability Analysis of PDEs: A Convex Method to Solve Integral Inequalities 28
3.1 Integral Inequalities with Polynomial Integrands in 1D . . . . . . . . . . . 29
3.2 Verifying Integral Inequalities with Integral Constraints . . . . . . . . . . . 35

3.2.1 Semidefinite Programming Formulation . . . . . . . . . . . . . . . 37
3.3 Integral Inequalities for Stability Analysis of PDEs . . . . . . . . . . . . . 38
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi
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Chapter 1

Introduction

The need for accurate models to study complex dynamical systems [20, 21, 130, 25] has

driven research efforts towards PDE systems - equations involving derivatives with respect

to more than one independent variable. Many, seemingly distinct, physical phenomena run-

ning the gamut of electrostatics to quantum mechanics can be mathematically formalized

by PDEs. The PDEs involve rates of change of (spatially) continuous variables; whereas,

the ODEs involve (spatially) discrete variables1. For instance, the configuration of a fluid

is given by a continuous distribution of several variables, while the position of a rigid body

is described by six numbers. Alternatively, we can say that the dynamics of the fluid take

place in an infinite-dimensional space; whereas, the dynamics of a rigid body occur in a

finite-dimensional space.

One example of a system that is best described by a PDE is the Tokamak plasma (see

Figure 1.1). In [137], control-oriented PDE models for the physical variables in the Toka-

mak plasma were proposed. One such variable is the poloidal flux ψ(R,Z) of the magnetic

field B(R,Z). The flux passes through a disc centered on the toroidal axis at height Z and

with a surface S = πR2, where R is the large plasma radius as depicted in Figure 1.2. The

1We call a variable continuous in an interval, if it can accept two particular real values such that it can
also accept all real values between them (even values that are arbitrarily close together). On the other hand,
if the variable can take on a value such that there is a non-infinitesimal gap on each side of it containing no
values that the variable can take on, then it is discrete around that value.
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Figure 1.1: Installation work inside the plasma vessel of the Tokamak reactor at IPP Max-
Planck Institut för Plasmaphysik. The transformer coil is situated behind the column. The
plasma vessel is surrounded by the main and the vertical-field coils (http://www.ipp.
mpg.de/16208/einfuehrung).

flux per radians is defined as

ψ(R,Z) :=
1

2π

∫
S

B(R,Z) · dS.

Let ρ = (2φ/Bφ0)1/2 be the toroidal flux coefficient indexing the magnetic surfaces, where

φ(t, ρ) is the toroidal flux per radians andBφ0(t) is the central magnetic field. The dynamics

of the poloidal flux are described by the linear parabolic PDE

∂ψ(t, ρ)

∂t
= D(t, ρ)

∂2ψ(t, ρ)

∂ρ2
+G(t, ρ)

∂ψ(t, ρ)

∂ρ
+ S(t, ρ),

where D(t, ρ) and G(t, ρ) are transport coefficients, and S(t, ρ) is the source term.

Another interesting PDE pertains to the turbulence phenomena in chemistry and com-

bustion [119, Chapter III, Section 4.1]. The Kuramoto-Sivashinsky equation is a nonlinear

PDE that models reaction-diffusion systems and can be used to describe pattern formation

2
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Figure 1.2: Diagram of the Tokamak system.

phenomena in the presence of turbulence and chaos. For an experimental setup, consider a

combustor consisting of two concentric cylinders with a narrow gap filled with combustible

gas as illustrated in Figure 1.3. The flame front develops wrinkles that are described by the

Kuramoto-Sivashinsky equation

∂u(t, x)

∂t
= −∂

4u(t, x)

∂x4
− µ∂

2u(t, x)

∂x2
− u(t, x)

∂u(t, x)

∂x
, t > 0, x ∈ (0, 1),

where µ > 0 is called the anti-diffusion parameter.

The infinite dimensional nature of PDE models, such as the two examples above, make

them challenging to study both analytically and numerically. Conventional numerical ap-

proaches to study PDEs rely on spectral or spatial discretization and use tools developed for

ODEs [42, 32]. Computational methods which do not require finite-dimensional approx-

imations are needed to mitigate the conservatism in the system analysis using numerical

approaches.

In the forthcoming sections, we outline some of the interesting analysis problems for

PDEs and review the literature on each of them. We also explain briefly how the latter

analysis problems are addressed in this dissertation.

3



Figure 1.3: Experimental setup for the Kuramoto-Sivashinsky equation. (top) Gas tur-
bine model combustor for swirled methane flames (http://www.dlr.de/vt/en/
desktopdefault.aspx/tabid-3080/4657_read-15212) (bottom) A pro-
totype of the combustor (http://www.osakagas.co.jp/rd/sheet/126e.
html).
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1.1 Stability Analysis of PDEs

The study of properties of solutions to PDEs, such as stability, parallels the study of ODEs

in several aspects. As for ODEs, conditions for stability of the zero solution can be specified

via spectral analysis when the PDE system is defined by a linear operator. Moreover, it is

possible to infer stability from the semi-group generated by the linear or nonlinear operators

which is analogous to the ODE approach of computing solutions to establish stability [26].

Similar to ODEs, another approach to stability analysis is through Lyapunov’s second

method. Early results on the extension of Lyapunov’s second method to PDEs included the

stability problem of elastic systems [75]. Although [75] studied the stability of an elastic

beam, the formulation provided was general. Also, in [83], a construction method for

Lyapunov functionals applied to linear PDE systems was proposed. Lyapunov theorems for

PDE systems were obtained in [131] and [49], as well. For linear PDE systems, following

in the footsteps of [28] associated with strongly continuous semi-groups, in [26, Theorem

5.1.3, p. 217], a Lyapunov equation is formulated which, if solved, ensures the exponential

stability of the semi-group (see Theorem A.1.4 and the subsequent discussions). This

Lyapunov equation is in terms of operators, and is a reminiscent of the one for linear ODE

systems. To illustrate, consider the abstract Cauchy problem

ζ̇(t) = A ζ(t), ζ(0) = ζ0∈ Z. (1.1)

Let A be the infinitestimal generator2 of the C0-semigroup T (t) on a Hilbert space Z , e.g.

a linear differential operator. Then, T (t) is exponentially stable if and only if there exists a

bounded positive linear operator P : Z → Z such that the following Lyapunov equation

2The infinitesimal generator A of a strongly continuous semigroup T is defined by

A ζ = lim
t→0+

T (t)ζ − ζ
t

,

whenever the limit exists. The domain of A , Dom(A ), is the set of ζ ∈ Z for which this limit exists;
Dom(A ) is a linear subspace and A is linear on this domain.

5



is satisfied

〈A ζ,Pζ〉Z + 〈Pζ,A ζ〉Z = −〈ζ, ζ〉Z (1.2)

for all ζ ∈ Dom(A ), which is a linear operator equation. Indeed, the left-hand side of (1.2)

can be derived by calculating the time derivative of the following Lyapunov functional

V (ζ) = 〈PT (t)ζ, T (t)ζ〉Z . (1.3)

Solving (1.2) can be cumbersome in the infinite-dimensional linear PDE case. In order

to tackle this drawback, in [26], the authors use a high-dimensional ODE approximation

instead of the (infinite-dimensional) linear PDE. Then, (1.2) reduces to a linear matrix

equation in high dimensions. Despite attempts to overcome the difficulty in solving the

resultant high dimensional matrix equations [76], solving these matrix equations remains

burdensome.

In the case of nonlinear PDEs, however, a priori choices for Lyapunov functionals for

a particular PDE system are difficult to find and are often too conservative. For example,

the energy of the state (which is a norm defined on a function space in the case of PDEs)

is a frequent choice, since it simplifies the analysis of a large set of nonlinear PDE sys-

tems, especially, when the nonlinearities are energy-preserving, e.g. convection [116]. Let

us illustrate the steps followed for the stability analysis of a nonlinear PDE through an

example.

Example 1.1.1 Let u = u(t, x) where t > 0 and x ∈ (0, 1). Consider Burgers’ equation

∂u

∂t
=
∂2u

∂x2
− u∂u

∂x
, u(t, 0) = u(t, 1) = 0, (1.4)

and the energy as a candidate Lyapunov functional:

E(u) =
1

2

∫ 1

0

u2 dx. (1.5)
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The time derivative of E(u) along the trajectories of (1.4) is

dE(u)

dt
=

∫ 1

0

u
∂u

∂t
dx =

∫ 1

0

u

(
∂2u

∂x2
− u∂u

∂x

)
dx. (1.6)

Applying integration by parts, we obtain

dE(u)

dt
= −

∫ 1

0

(
∂u

∂x

)2

dx+

(
u
∂u

∂x

)
|1x=0 −

1

3
u3|1x=0 (1.7)

and since u(t, 0) = u(t, 1) = 0, this results in

dE(u)

dt
= −

∫ 1

0

(
∂u

∂x

)2

dx. (1.8)

Notice that the convection term uux (energy preserving nonlinearity) in (1.4) was integrated

to zero thanks to the boundary conditions. In order to demonstrate exponential stability

of (1.4), one needs to relate
∫ 1

0

(
∂u
∂x

)2
dx to

∫ 1

0
u2 dx, so as to relate dE(u)

dt
to E(u).

This is done by employing the following inequality (known as the Poincaré inequality) on

Ω = (0, 1) with Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0

∫ 1

0

u2 dx ≤ 1

π2

∫ 1

0

(
∂u

∂x

)2

dx. (1.9)

Combining (1.8) and (1.9), we get

dE(u)

dt
≤ −π2

∫ 1

0

u2 dx = −2π2E(u) (1.10)

which proves the exponential decay for E(u(t, x)), since E(u(t, x)) ≤ E(u(0, x))e−2π2t.

Note that the key tool in the above calculations was integration-by-parts. Use (or knowl-

edge) of inequalities relating variables and their spatial derivatives in the domain such as

Wirtinger [108], Poincaré and the Sobolev Embedding Theorem [33, Sec 5.6] was also

required.
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Analytical Lyapunov stability analysis of PDE systems becomes more involved for sys-

tems of several dependent variables, different nonlinearities (e.g., cubic terms) and for

systems with spatially varying properties (inhomogeneous PDEs). For such systems, the

energy functional may lead to poor stability bounds.

One alternative class of Lyapunov functional candidates for PDE systems is the weighted

Hq-norms (Sobolev norms). These functionals yield Lyapunov conditions requiring the

verification of integral inequalities. In this context, computing the Lyapunov functionals

requires the solution of integral inequalities [116].

1.1.1 Contribution

In Chapter 3, we present a method to verify integral inequalities with integrands that are

polynomials in the dependent variables. The polynomial structure allows for a quadratic-

like representation of the integrand and we formulate conditions for the positivity of in-

tegral expressions in terms of differential matrix inequalities. For the case of integrands

that are polynomial in the independent variables as well, the differential matrix inequal-

ity formulated by the proposed method becomes a polynomial matrix inequality. We then

exploit the SDP formulation [84] of optimization problems with linear objective functions

and polynomial constraints [24] to obtain a numerical solution to the integral inequalities.

Several analysis and feedback design problems have been studied using polynomial opti-

mization, to name but a few, the stability of time-delay systems [86], synthesis of control

laws [129, 94], applied to optimal controller design [66] and system analysis [48]. In the

context of PDEs, [80] laid the first bricks, where the stability analysis of linear parabolic

PDEs was formulated as an SOS program.

The proposed method to solve integral inequalities is then applied to study the stability

of PDE systems using the weighted Sobolev norms as the Lyapunov functional candidate.

A preliminary version of the contributions described in Chapter 3 was presented in the 2014

53rd IEEE Conference on Decision and Control [126]. The extended version of the results
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was published in [128].

1.2 Dissipation Inequalities for Input-Output Analysis of PDEs

1.2.1 Literature Review

A powerful tool in the study of robustness and input-state/output properties of dynami-

cal systems is dissipation inequalities [135, 51]. A dissipation inequality relates a storage

function/functional, which characterizes the internal energy in the system, and a supply

rate, which represents a generalized power supply function. Given a supply rate, the so-

lution to the dissipation inequality is a storage function/functional, which, according to

the supply rate, can certify different system properties such as passivity, induced L2-norm

boundedness, reachability, and ISS. One major advantage of dissipation inequalities is that,

in the case of systems consisting of an interconnection of subsystems, once some property

of the subsystems is known in terms of dissipation inequalities, we can infer properties of

the overall system [102].

For linear systems described by ODEs, quadratic storage functions of states are known

to be both necessary and sufficient solutions to dissipation inequalities with quadratic sup-

ply rates [124]. For example, the Kalman-Yakubovic-Popov lemma [60] presents necessary

and sufficient conditions to construct quadratic storage functions certifying the dissipa-

tion inequality for passivity of linear ODE systems. These conditions are given in terms

of quadratic expressions, which can be checked computationally via LMIs [18, Chapter

2]. For ODEs with polynomial vector fields, [31] proposes an approach for constructing

polynomial storage functions based on SOS programming. For general nonlinear ODEs,

however, the solution to dissipation inequalities may require ad hoc techniques.

With respect to PDEs, the solution (state) is a function of both space and time. More-

over, the solution belongs to an infinite-dimensional (function) space, as opposed to a Eu-

clidean space in the case of ODEs. Unlike Euclidean spaces, for function spaces, say
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Sobolev spaces, different norms are not equivalent [33]. Therefore, input-state/output prop-

erties differ from one norm to another.

In the context of PDEs, solutions to dissipation inequalities have been recently pro-

posed. For linear time-varying hyperbolic PDEs, the weighted L2-norm functional was

considered as a certificate for ISS in [97]. ISS storage functionals were suggested in [71],

for semi-linear parabolic PDEs. In [20], ISS of a semi-linear diffusion equation was an-

alyzed using the weighted L2-norm as the storage functional and a control approach was

formulated for a model of magnetic flux profile in Tokamak plasma. In this particular case,

the calculation of the storage functional was formulated as the solution of a differential

inequality, which was solved using a numerical method. More general ISS definitions were

presented in [27], and a small gain theorem for the interconnection of PDEs was formu-

lated.

However, once a dissipation inequality is formulated for an input-state/output property

characterized by a supply rate, solving the dissipation inequality is difficult in general,

especially in the case of nonlinear PDEs.

1.2.2 Contribution

In Chapter 4, we present a framework for input-state/output analysis of a class of nonlinear

PDEs based on dissipation inequalities. Each input-state/output property, namely passiv-

ity, reachability, induced input-output norms and ISS, is defined in the appropriate Sobolev

norm. For each property, the relevant dissipation inequality is formulated. We consider

PDEs with inputs and outputs defined over the domain, and PDEs with inputs and outputs

defined at the boundaries of the domain. Equipped with these dissipation inequalities, we

study interconnections of PDE-PDEs and PDE-ODEs with the interconnection either at the

boundary and/or over the domain. In this case, we formulate small-gain type theorems. Ad-

ditionally, we use convex optimization to systematically solve the dissipation inequalities

for PDEs described by polynomials on the independent and the dependent variables.
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Preliminary results on the material presented in Chapter 4 were presented in the 2014

53rd IEEE Conference on Decision and Control [2]. The journal version of the results was

also published in [6].

1.3 Barrier Functionals for the Analysis of PDEs

1.3.1 Safety Verification

One interesting problem in the analysis of PDEs is safety verification. That is, given the

set of initial conditions, check whether the solutions of a PDE satisfy a set of constraints,

or, in other words, whether they avoid an unsafe set. Reliable safety verification methods

are fundamental to the design of safety critical systems such as life support systems (to

ensure that the carbon dioxide and oxygen concentrations in a Variable Configuration CO2

Removal subsystem never reach unacceptable values) [41], and wind turbines (to guarantee

safe emergency shutdown in the case of a fault or a large wind gust) [136].

The safety verification problem is well-studied for ODE systems (see the survey pa-

per [44]). Methods based on the approximation of the reachable sets are considered in [63]

for linear systems and in [121] for nonlinear systems. Another method for safety verifica-

tion, which does not require the approximation of reachable sets, uses barrier certificates.

Barrier certificates [91] were introduced for model invalidation of ODEs with polynomial

vector fields and have been used to address safety verification of nonlinear and hybrid sys-

tems [93] and safety analysis of time-delay systems [92]. In [7], model validation and

invalidation of biological models using exponential barrier certificates was considered. Ex-

ponential barrier functions were proposed in [115] for finite-time regional verification of

stochastic nonlinear systems, as well. Moreover, compositional barrier certificates and

converse results were studied in [110] and [95], respectively.

The application of barrier certificates goes beyond just the analysis. In [134], inspired

by the notion of control Lyapunov functions (CLFs) [8] and Sontag’s formula [111], Wei-
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land and Allgöwer introduced control barrier functions (CBFs) and formulated a controller

synthesis method that ensures safety with respect to an unsafe set.

1.3.2 Bounding Output Functionals of PDEs

In many engineering design problems, one may merely be interested in computing a func-

tional of the solution to the underlying PDE rather than the solution itself (see the review

article [10] for a number of applications in structural mechanics). For instance, the far-field

pattern in electromagnetics and acoustics [73] and energy release rate in elasticity theory

[139] are both functionals of the solutions to the governing PDEs.

The ubiquity of applications has motivated the development of computational algo-

rithms for output functional approximation. In [88], an augmented Lagrangian-based ap-

proach was proposed for the calculation of upper and lower bounds to linear output func-

tionals of coercive PDEs. In [73], adjoint and defect methods for obtaining estimates of

linear output functionals for a class of stationary (time-independent) PDEs were suggested.

In [138], the authors formulated an a posteriori bound methodology for linear output func-

tionals of finite element solutions to linear coercive PDEs. Adjoint and defect methods

for computing estimates of the error in integral functionals of solutions to stationary linear

PDEs were discussed in [89]. In [14], an SDP-based bound estimation scheme for linear

output functionals of linear elliptic PDEs, based on the moments problem, was formulated.

However, most of the methods proposed to date require finite element approximations

of the solution, which is susceptible to inherent discretization errors. Furthermore, it may

not be clear whether an attained bound from finite element approximations on the output

functionals is an upper or lower bound estimate. Consequently, we need certificates to

verify an obtained bound (see [139, 82] for finite element based methods with certificates

for linear/quadratic output functionals of stationary linear elliptic PDEs).
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1.3.3 Contribution

In Chapter 5, Section 5.1, we present a method for safety verification of systems described

by PDEs. In this case, the considered sets that are subsets of Hilbert spaces rather than only

subsets of Euclidean spaces as in the case of systems described by ODEs. The proposed

method relies on barrier functionals, which are functionals of the dependent and indepen-

dent variables. We show that if there exists a barrier functional that satisfies two inequalities

along the solutions of the PDE, then we can conclude that the solutions avoid an unsafe set

for all time or at some specific time instant. If the barrier certificate is defined as an integral

functional, the latter inequalities become integral inequalities. In the case of polynomial

data, we solve these integral inequalities by convex optimization.

In Chapter 5, Section 5.2, we apply the safety verification framework to compute

bounds on output functionals of a class of time-dependent PDEs, without the need to ap-

proximate the solutions. The method is based on reformulating the output functional es-

timation method into a safety verification scenario using an appropriate definition of the

unsafe set in terms of the output functional of interest. For each upper bound, the proposed

method provides a barrier functional as a certificate. For the case of polynomial PDEs and

polynomial output functionals (in both dependent and independent variables), SOS pro-

gramming can be used to construct the barrier functionals and therefore to compute upper

bounds. This reduces the problem to solving SDPs.

The results pertaining to bounding output functionals of PDEs, were presented in the

2015 American Control Conference [3]. A journal version which contains the safety veri-

fication method and more discussions is currently under preparation [5].
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1.4 Input-Output Analysis of Fluid Flows

1.4.1 Literature Review

The dynamics of incompressible fluid flows is described by a set of nonlinear PDEs known

as the Navier-Stokes equations. The properties of such flows are then characerized in terms

of a dimensionless parameterRe called the Reynolds number. Experiments show that many

flows have a critical Reynolds number ReC below which the flow is stable with respect to

disturbances of any amplitude. However, spectrum analysis of the linearized Navier-Stokes

equations, considering only infinitesimal perturbations, predicts a linear stability limit ReL

which upper-bounds ReC [30]. On the other hand, the bounds using energy methods ReE ,

the limiting value for which the energy of arbitrary large perturbations decreases monoton-

ically, are much below ReC [55]. For Couette flow, for instance, ReE = 32.6 computed

by [106] using energy functional, ReL =∞ using spectrum analysis [101] and ReC ≈ 350

estimated empirically by [120].

The discrepancy between ReL and ReC have long been attributed to the eigenvalues

analysis approach [123], citing a phenomenon called transient growth as the culprit; i.e., al-

though the perturbations to the linearized Navier-Stokes equation are stable (and the eigen-

values have negative real parts), they undergo high amplitude transient amplifications that

steer the trajectories out of the region of linearization. This has led to studying the resolvent

operator or ε-pseudospectra based on the general solution to the linearized Navier-Stokes

equations [103].

Another method for studying stability is based on spectral truncation of the Navier-

Stokes equations into an ODE system. This method is fettered by truncation errors and by

the mismatch between the dynamics of the truncated model and the Navier-Stokes PDE.

To alleviate this drawback, recently in [42, 22], a method was proposed based on keeping

a number of modes from Galerkin expansion and bounding the energy of the remaining
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modes. It was shown in [52] that, in the case of rotating Couette flow, this method can find a

global stability limit which is better than the energy method. The method was also extended

in [22] to address the problem of finding bounds for time-averaged flow parameters with

applications to flow control for drag reduction.

Since the seminal paper by [99], it was observed that external excitations and body

forces play an important role in flow instabilities. Mechanisms such as energy amplifica-

tion of external excitations have shown to be crucial in understanding transition to turbu-

lence as highlighted by [55]. Energy amplification of stochastic forcings to the linearized

Navier-Stokes equations in unbounded shear and deformation flows was studied in [37]. In

a similar vein, in [13], using the linearized Navier-Stokes equation, it was shown analyti-

cally, through the calculation of traces of operator Lyapunov equations, that the H2-norm

from streamwise constant excitations to perturbation velocities in channel flows is propor-

tional to Re3. The amplification mechanism of the linearized Navier-Stokes equation was

verified in [59] and [58], where the influence of each component of the body forces was

calculated in terms of H2 and H∞-norms based on finding analytical solutions to the Lya-

punov equations. Input-output analysis of a model of plane Couette flow was carried out

in [40] to study the nonlinear mechanisms associated with turbulence. In another vein,

an input-state analysis method for the linearized Navier-Stokes equation by calculating

the spatio-temporal impulse responses was given in [57]. Linear energy amplification of

turbulent channel flows, by considering the turbulent mean velocity profiles and turbulent

eddy viscosities, was studied in [29] with the corresponding transient growth analysis given

in [98]. Linear non-normal energy amplification for harmonic and stochastic excitations to

small coherent perturbations in turbulent channel flows was considered in [53]. The litera-

ture on input-output analysis methods is vast, but a review of input-output analysis methods

was presented in [12], where the authors apply linear robust control theory techniques to

the discretized version of the linearized complex Ginzburg-Landau equation. Linear ro-

bust control theory methods were also used in [11] for input-output analysis and control of
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two-dimensional perturbations to a spatially evolving boundary layer on a flat plate.

1.4.2 Contribution

In Chapter 6, we consider the stability and input-output properties of incompressible, vis-

cous fluid flows. We study input-output properties such as maximum energy growth, worst-

case input amplification (induced L2-norms from body forces to perturbation velocities)

and ISS. In particular, we consider flow perturbations constant in one of the three spatial

coordinates. This is motivated by the transient growth analyses of the linearized Navier-

Stokes equations for channel flows [77, 45, 37] suggesting that the streamwise constant

modes receive largest energy growth and pseudo-spectral analysis of the linearized Navier-

Stokes [123] implying that streamwise constant perturbations have the maximum energy

growth. Our main tools for the input-output analysis are the dissipation inequalities devel-

oped in Chapter 4. For flows with streamwise constant perturbations, we find a suitable

structure as a Lyapunov/storage functional that converts the dissipation inequalities into

integral inequalities with quadratic integrands in dependent variables. Then, using these

functionals, we propose conditions based on matrix inequalities. In the case of polynomial

base velocity profiles, e.g. Couette and Poiseuille flows, these inequalities can be checked

via convex optimization using available computational tools.

The preliminary version of the formulation described in Chapter 6 was presented at the

2015 54th IEEE Conference on Decision and Control [4]. A journal article including the

discussions on pipe flows and more examples is currently under preparation.
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1.6 Notation

The notation throughout this thesis is as follows.

Let R,R≥0,R>0 and Rn denote the field of reals, the set of non-negative reals, the set

of positive reals and the n-dimensional Euclidean space, respectively. The sets of natural

numbers and non-negative natural numbers are denoted N and N≥0, respectively.

We use M ′ to denote the transpose of matrix M . The set of real symmetric matrices is

denoted Sn = {A ∈ Rn×n|A = A′}. For A ∈ Sn, denote A ≥ 0 (A > 0) if A is positive

semidefinite (definite), the linear operator He(·) satisfies He(A) := A + A′. diag(A,B)

denotes the block-diagonal matrix formed by matrices A and B. We denote by In×n the

unit matrix of size n× n.

The closure of set Ω is denoted Ω. The boundary ∂Ω of set Ω is defined as Ω \ Ω

with \ denoting set subtraction. The ring of polynomials, the ring of positive polynomials,

and the ring of sum-of-squares polynomials on a real variable x are denoted R[x], P [x]

and Σ[x] respectively. The ring of SOS square matrices of dimension n, i.e., matrices

M(x) ∈ Rn×n[x] satisfying M(x) =
∑nM

i=1 N
′
i(x)Ni(x) with Ni(x) ∈ Rdi×n, is denoted

Σn×n[x]. For n, k ∈ N≥0, define the matrix K ∈ Nn×σ(n,k), σ(n, k) :=
(
n+k−1
n−1

)
=

(n+k−1)!
(n−1)!k!

, of which the columns satisfy
∑n

i=1Kij = k, ∀j, without repetition. The multi-

index notation is used to define the vector of all monomials of degree k ∈ N on vector

w = (w1, w2, . . . , wn) ∈ Rn, as w{k} :=

[
(wK(·1))′ · · · (wK(·σ(n,k))′

]
where wK(·j) :=∏n

i=1 w
Kij
i . The number of terms in w{k} is hence given by σ(n, d). For instance, with

n = 2 and k = 2, we have K = [ 2 1 0
0 1 2 ], and w{2} = (w2

1, w1w2, w
2
2). Define the vector

containing all monomials in w up to degree k as ηk(w) :=

[
1 (w{1})′ · · · (w{k})′

]′
.

The set T of (vector) functions, mapping Ω into A, is denoted T (Ω;A) and we use the

notation T (Ω) or TΩ whenever the range can be understood from the context. In particular,

we denote T = Ck for the set of continuous vector functions, which are k-times differ-

entiable and have continuous derivatives. Alternatively, p ∈ Ck[x] implies p is k-times

continuous differentiable with respect to variable x. If p ∈ C1(Ω), then ∂xp is used to
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denote the derivative of p with respect to variable x, i.e. ∂x := ∂
∂x

. In addition, we adopt

Schwartz’s multi-index notation. For u ∈ Ck(Ω;Rn), α ∈ Nn
0 , define

Dαu := (u1, ∂xu1, . . . , ∂
α1
x u1, . . . , un, ∂xun, . . . , ∂

αn
x un) .

We use T = Wq,p to represent the Sobolev space of p-th power, up to q-th derivative

integrable functions u endowed with the norm

‖u‖Wq,p
Ω

=

(∫
Ω

q∑
i=0

∣∣∂ixu∣∣p dx

) 1
p

,

for 1 ≤ p <∞ and q ∈ N≥0, and

‖u‖Wq,∞
Ω

= max
i=0,...,q

(
sup
x∈Ω

∣∣∂ixu∣∣) ,
for p =∞, where | · | signifies the absolute value. We denote the case p = 2 simply as the

Hilbert spaceHq
Ω. For q = 0, we use the notation LpΩ for the Lebesgue space. Also, we use

the following notation

‖u‖Hq
[0,T ),Ω

=

(∫ T

0

〈u, u〉HqΩ dt

) 1
2

,

where 〈u, u〉HqΩ is the inner product in Hq
Ω. We remove the subscript of Hq

[0,T ),Ω, i.e., Hq,

when T =∞.

For a function f ∈ C1(Ω) and g ∈ C2(Ω),∇f denotes the gradient vector,∇2g denotes

the Hessian matrix and ∆g is the Laplacian operator. The ceiling function is denoted d·e.

A continuous, strictly increasing, function k : [0, a) → R≥0, satisfying k(0) = 0,

belongs to class K. If a = ∞ and limx→∞ k(x) = ∞, k belongs to class K∞. We recall

that for any class K function, the inverse exists and belongs to class K. Furthermore, for

any positive a, b > 0 and k ∈ K, we have [112, Inequality (12)]

k(a+ b) ≤ k(2a) + k(2b). (1.11)
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For a symmetric matrix function S(x) : Ω→ Rn×n, we define λm(S) = infx∈Ω |λmin (S(x)) |,

where λmin : Sn → R is the minimum eigenvalue function. Similarly, λM(S) = supx∈Ω |λmax (S(x)) |,

where λmax : Sn → R is the maximum eigenvalue function.

Finally, Dom(A ) and Ran(A ) denote the domain and range of the operator A , re-

spectively.
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Chapter 2

Preliminaries

In this chapter, we present some mathematical definitions and preliminary results that will

be used in the sequel. We begin this chapter by presenting some results on stability of PDE

solutions. Then, we touch upon a number of inequalities that are used in this dissertation.

Finally, we provide a brief review of SOS programming.

2.1 Partial Differential Equations

We succinctly describe the stability notions pertained to PDEs. For the sake of self-

containment, Appendix A reviews some results and definitions regarding semi-group the-

ory and well-posedness of linear and nonlinear PDEs. While these results are important

from a mathematical perspective, they are not central to our discussions in this disserta-

tion. Throughout the dissertation, we assume that the PDEs under study satisfy the well-

posedness conditions as outlined in Appendix A.

2.1.1 Stability of PDEs

Fundamental to our results is the notion of stability or convergence for the solutions of a

PDE. Unlike the finite-dimensional systems, stability or convergence for solutions to a PDE
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system should be understood in the sense of the norm one considers. In this dissertation,

we study the stability and input-state/output properties in the sense of Sobolev norms.

In this section, we detail the formulation presented in [49] for stability of PDEs. Similar

formulations are found in [75], [83] and [131], as well.

We begin by defining an equilibrium and afterwards stability.

Definition 2.1.1 (Definition 4.1.2 in [49]) Let {T (t), t ≥ t0} be a nonlinear semi-group

(dynamical system) on a complete metric space U and for any u ∈ U , let Y (u) = {T (t)u, t ≥

t0} be the orbit through u. We say u is an equilibrium point if Y (u) = {u}.

An orbit Y (u) is stable if for any ε > 0, there exists δ(ε) > 0 such that for all t ≥ t0,

‖T (t)u − T (t)v‖U < ε whenever ‖u − v‖U < δ(ε), v ∈ U , where ‖ · ‖U is a norm

defined on U . An orbit is uniformly asymptotically stable if it is stable and also there is a

neighbourhood V = {v ∈ U | ‖u− v‖U < r} such that ‖T (t)u− T (t)v‖U → 0 as t→∞,

uniformly for v ∈ V 1. Similarly, it is exponentially stable if there exist σ, γ > 0 such that

‖T (t)u− T (t)v‖U ≤ γ‖u− v‖Ue−σ(t−t0),

for all t ≥ t0 and all u, v ∈ U .

We are interested in studying the stability of PDEs based on Lyapunov’s second method.

We need the definition of a Lyapunov function first.

Definition 2.1.2 (Definition 4.1.3 in [49]) Let {T (t), t ≥ t0} be a nonlinear semi-group

on U . A Lyapunov function is a continuous real-valued function V on U such that

∂tV (u) = lim
t→0+

V (T (t)u)− V (u)

t
≤ 0, (2.1)

for all u ∈ U .
1i.e. ∀ε > 0,∃t0 > 0 : t > t0 such that ‖T (t)u− T (t)v‖U < ε, ∀v ∈ U .
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Theorem 2.1.3 (Lyapunov Theorem for Nonlinear Semi-groups, [49, Theorem 4.1.4]), Let

{T (t), t ≥ t0} be a nonlinear semi-group, and let ψ be an equilibrium point in U . Suppose

V is a Lyapunov function on U which satisfies V (ψ) = 0, and V (u) ≥ α1‖u − ψ‖U for

α1 > 0 and u ∈ U . Then, ψ(x) is stable. In addition, if ∂tV (u) ≤ −α2‖u − ψ‖U for

α2 > 0, then ψ is uniformly asymptotically stable.

For the proof of the above theorem, refer to [49, p. 84]. The exponential stability of linear

semi-groups can also be certified by the solution to the Lyapunov equation presented in [26,

Theorem 5.1.3].

In particular, in this dissertation, we consider stability in Sobolev spacesHq
Ω.

Definition 2.1.4 (Stability inHq
Ω) Consider the PDE

∂tu = F (x,Dαu), x ∈ Ω, t > 0. (2.2)

Let ψ be an equilibrium of (2.2), satisfying F (x,Dαψ) = 0, x ∈ Ω, and u(0, x) = u0(x).

Then, ψ is

• stable inHq
Ω, if for any ε > 0, ∃δ = δ(ε) > 0 such that

‖u0 − ψ‖HqΩ < δ ⇒ ‖u(t, ·)− ψ‖HqΩ < ε, t ≥ 0,

• asymptotically stable inHq
Ω, if it is stable and ∃δ > 0 such that

‖u0 − ψ‖HqΩ < δ ⇒ lim
t→∞
‖u(t, ·)− ψ‖HqΩ = 0,

• exponentially stable inHq
Ω, if there exists scalars λ > 0 and M > 0,

‖u(t, ·)− ψ‖2
HqΩ
≤M‖u0 − ψ‖2

HqΩ
e−λt, t ≥ 0.

In this dissertation, we consider stability to the null solution, i.e., ψ(x) = 0, ∀x ∈ Ω in

Definition 2.1.4.
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2.2 Some Useful Inequalities

In the sequel, we use a number of inequalities that are listed below for the reader’s conve-

nience.

Lemma 2.2.1 (Hölder’s Inequality [47]) Let p, q ∈ [1,∞] satisfying 1
p

+ 1
q

= 1. Then,

for all measurable functions f and g, it holds that

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Lemma 2.2.2 (Young’s Inequality [47]) For any a, b ∈ R≥0 and p, q > 0 satisfying 1
p

+

1
q

= 1, then

ab ≤ ap

p
+
bq

q
.

Lemma 2.2.3 (Poincaré Inequality [85]) Assume Ω is a bounded, convex, Lipschitz do-

main with diameter D, and u ∈ C1(Ω) with Dirichlet u|∂Ω = 0 or periodic
∫

Ω
u dΩ = 0

boundary conditions. Then, the following inequality holds

π

D
‖u‖L2

Ω
≤ ‖∇u‖L2

Ω
.

2.3 Sum-of-Squares Programming

We employ SOS programming in our computational formulations. That is, we convert

different analysis problems into a sum-of-squares program (SOSP), i.e., an optimization

problem involving a linear objective function subject to a set of polynomial constraints as

24



given below

minimize
c∈RN

w′c

subject to

a0,j(x) +
N∑
i=1

pi(x)ai,j(x) = 0, j = 1, 2, . . . , J̄ ,

a0,j(x) +
N∑
i=1

pi(x)ai,j(x) ∈ Σ[x], j = J̄ + 1, J̄ + 2, . . . , J, (2.3)

where w ∈ RN is a vector of weighting coefficients, c ∈ RN is a vector formed of the

(unknown) coefficients of {pi}N̄i=1 ∈ R[x] and {pi}Ni=N̄+1
∈ Σ[x], ai,j(x) ∈ R[x] are given

scalar constant coefficient polynomials, pi(x) ∈ Σ[x] are SOSP variables.

The gist of the idea behind SOS programming is that if there exists an SOS decom-

position for p(x) ∈ R[x], i.e., if there exist polynomials f1(s), . . . , fm(x) ∈ R[x] such

that

p(x) =
m∑
i=1

f 2
i (x),

then it follows that p(x) is non-negative. Unfortunately, the converse does not hold in

general2 ; that is, there exist non-negative polynomials which do not have an SOS decom-

position. An example of this class of non-negative polynomials is the Motzkin’s polyno-

mial [74] given by

p(x) = 1− 3x2
1x

2
2 + x2

1x
4
2 + x4

1x
2
2, (2.4)

which is non-negative for all x ∈ R2 but is not a SOS. This imposes some degree of

conservatism when utilizing SOS based methods. Generally, determining whether a given

2Exceptions [100]:

• Univariate polynomials of any even degree,

• Quadratic polynomials in any number of variables,

• Quartic polynomials in two variables.
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polynomial is positive is an NP-hard problem [16] (except for degrees less than 4); but, SOS

decompositions provide a conservative, yet computationally feasible method for checking

non-negativity. The next lemma gives an intriguing formulation to the SOS decomposition

problem.

Lemma 2.3.1 ([24]) A polynomial p(x) of degree 2d belongs to Σ[x] if and only if there ex-

ist a positive semi-definite matrixQ (known as the Gram matrix) and a vector of monomials

Z(x) which contains all monomial of x of degree ≤ d such that p(x) = ZT (x)QZ(x).

In [23] and [84], it was demonstrated that the answer to the query that whether a given

polynomial p(x) is SOS or not can be investigated via semi-definite programming method-

ologies.

Lemma 2.3.2 ([84]) Given a finite set {pi}mi=0 ∈ R[x], the existence of a set of scalars

{ai}mi=1 ∈ R such that

p0 +
m∑
i=1

aipi ∈ Σ[x] (2.5)

is a linear matrix inequality (LMI)3 feasibility problem.

In the sequel, we need to verify whether a matrix with polynomial entries is positive

(semi)definite. To this end, we use the next lemma from [96].

Lemma 2.3.3 ([96]) Denote by ⊗ the Kronecker product. Suppose F (x) ∈ Rn×n[x] is

symmetric and of degree 2d for all x ∈ Rn. In addition, let Z(x) ∈ Rn×1[x] be a column

vector of monomials of degree no greater than d and consider the following conditions

(A) F (x) ≥ 0 for all x ∈ Rn

(B) vTF (x)v ∈ Σ[x, v], for any v ∈ Rn.

3 An LMI is an expression of the form

A0 + x1A1 + x2A2 + · · ·+ xmAm ≥ 0,

where x ∈ Rm and Ai ∈ Sn, i = 1, 2, . . . ,m. The above LMI specifies a convex constraint on x.
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(C) There exists a positive semi-definite matrix Q such that

vTF (x)v = (v ⊗ Z(x))TQ(v ⊗ Z(x)),

for any v ∈ Rn.

Then (A)⇐ (B) and (B)⇔ (C).

Furthermore, we are often interested in checking positivity of a matrix with polynomial

entries F (x) ∈ Rn×n[x] inside a set Ω ⊂ Rn. It turns out that if the set is semi-algebraic4,

Putinar’s Positivstellensatz [65, Theorem 2.14] can be used.

Corollary 2.3.4 For F (x) ∈ Rn×n[x], ω ∈ R[x] and Ω = {x ∈ Rn | ω(x) ≥ 0}, if there

exists N(x) ∈ Σn×n[x] such that

F (x)−N(x)ω(x) ∈ Σn×n[x], (2.6)

then F (x) ≥ 0, ∀x ∈ Ω.

If the coefficients of F (x) depend affinely in unknown parameters and the degree of

N(x) is fixed, checking whether (2.6) holds can be cast as a feasibility test of a convex set

of constraints, an SDP, whose dimension depends on the degree of the polynomial entries

of F (x) and N(x).

Algorithms for solving SOS programs are automated in MATLAB toolboxes such as

SOSTOOLS [79] and YALMIP [68], in which the SOS problem is parsed into an SDP

formulation and the SDPs are solved by LMI solvers such as SeDuMi [117]. In this disser-

tation, we use the SOSTOOLS toolbox for the numerical experiments.

4 A semi-algebraic set S ⊂ Rn for some closed field, say R, is defined by a set of polynomial equalities
and inequalities as follows

S = {x ∈ Rn | pi(x) ≥ 0, i = 1, 2, . . . , np, qi(x) = 0, i = 1, 2, . . . , nq} ,

where {pi}np

i=1, {qi}
nq

i=1 ∈ R[x].
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Chapter 3

Stability Analysis of PDEs: A Convex

Method to Solve Integral Inequalities

We begin our research in the analysis of PDEs with studying stability. In particular, we are

interested in studying stability using Lyapunov methods for PDEs [75, 28].

As highlighted in the Introduction and Example 1.1.1, Lyapunov analysis of PDEs leads

to a set of integral inequalities. This chapter is concerned with formulating a method to

verify the non-negativity of integral inequalities using convex optimization. We begin this

chapter by discussing integral inequalities that are defined over the 1-dimensional domain.

We study integral inequalities with integrands that are polynomial in the dependent vari-

ables. This allows for a quadratic representation of the integrands. The integral inequalities

are subject to constraints on the dependent variables over the boundary of the domain of

integration. Based on these boundary constraints, we show how the Fundamental Theorem

of Calculus can be used to introduce terms that characterize the non-uniqueness of the in-

tegral kernels. This reformulates the problem of checking the positivity of the integral into

checking the positivity of a matrix inequality over some domain. In the case of polynomial

dependence in the independent variables, checking the matrix inequalities becomes an SOS

program.
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The proposed method for solving integral inequalities is then applied to the Lyapunov

stability analysis problem of PDEs. We choose a Lyapunov functional structure in the

form of weighted Sobolev norms. We show that if the Lyapunov functional satisfies two

integral inequalities for a given PDE system, we can conclude the exponential stability of

the solutions.

Finally, the proposed results are illustrated through several examples.

A preliminary version of the contributions described in this chapter was presented in

the 2014 53rd IEEE Conference on Decision and Control [126]. The extended version of

the results was published in [128].

3.1 Integral Inequalities with Polynomial Integrands in 1D

In this section, we study inequalities given by polynomials on the dependent variables

evaluated at the boundaries of the domain of integration and integral terms with polynomial

integrands on the dependent variables.

Consider the integral inequality

fb
(
Dα−1u(t, 1), Dα−1u(t, 0)

)
+

∫ 1

0

fi (x,D
αu) dx ≥ 0, ∀t ≥ 0,

with [0, 1] = (0, 1) (note that any bounded domain on R can be mapped into [0, 1] = (0, 1)

with an appropriate change of variables), u : R≥0×[0, 1]→ Rn, fb ∈ R[Dα−1u(t, 1), Dα−1u(t, 0)],

fi(·, Dαu) ∈ R[Dαu] (fi is a polynomial on its second argument). In order to simplify the

exposition, let us define

Dα−1
b u :=

[
(Dα−1u(t, 1))

′
(Dα−1u(t, 0))

′
]′
.

For max(deg(fb), deg(fi)) = k, we can express the polynomials fb and fi in the quadratic-

29



like forms

fb(D
α−1
b u) =

(
ηd k2e(Dα−1

b u)
)′
Fb η
d k2e(Dα−1

b u) (3.1)

fi(x,D
αu) =

(
ηd k2e(Dαu)

)′
Fi(x) ηd k2e(Dαu) (3.2)

where the symmetric matrix Fb ∈ Sσ(2nα,d k2e) and the symmetric matrix function Fi :

[0, 1]→ Sσ(nα,d k2e). The dependent variable u is assumed to belong to sets of the form

Ub :=
{
u ∈ Cα([0, 1]) | BDα−1

b u = 0
}
, (3.3)

with B ∈ Rnb×2nα, where nb is the number of constraints on the boundary.

We study the following problem:

Problem 3.1.1 Check whether the following integral inequality holds

fb(D
α−1
b u) +

∫ 1

0

fi(x,D
αu) dx ≥ 0, ∀t ≥ 0, ∀u ∈ Ub. (3.4)

For a given polynomial fb, Fb in the representation (3.1) may be non-unique and is

taken as an element of the set

Fb(k, α) =
{
Fb +Gb ∈ Sσ(nα,d k2e)

| fi = (ηd k2e(Dα−1
b u))′Fbη

d k2e(Dα−1
b u), 0 = (ηd k2e(Dα−1

b u))′Gbη
d k2e(Dα−1

b u)
}
. (3.5)

Similarly, for a given function fi, the set of quadratic-like representation (3.2) is taken as

an element of the set

Fi(k, α) =
{
Fi +Gi : [0, 1]→ Sσ(nα,d k2e)

| fi = (ηd k2e(Dαu))′Fi(x)ηd k2e(Dαu), 0 = (ηd k2e(Dαu)′Gi(x)ηd k2e(Dαu)
}
. (3.6)
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Example 3.1.2 Consider fi(x, (u, ∂xu)) = x2∂xu+2u(∂xu)2, u ∈ {u | u(t, 0) = u(t, 1)},
yielding k = 3, α = 1, and D1u = (u, ∂xu), ηd 3

2e(D1u) = (1, u, ∂xu, u
2, u∂xu, (∂xu)2).

The quadratic representation (3.2) and the set (3.3) are obtained withD0
bu = [ u(t,1) u(t,0) ]′,

Fi(x) =



0 0 x2

2 0 0 0

0 0 0 0 0 1

x2

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0


, B =

[
1 −1

]
.

The set Fi(3, 1) is defined by matrices Gi(x) as

Gi(x) =



0 0 0 g1(x) g2(x) g3(x)

0 −2g1(x) −g2(x) 0 0 0

0 −g2(x) −2g3(x) 0 0 0

g1(x) 0 0 0 0 g4(x)

g2(x) 0 0 0 −2g4(x) 0

g3(x) 0 0 g4(x) 0 0


.
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A complete quadratic representation of the integral expression (3.4), must also ac-

count for the differential relation among the entries of Dαu. To this end, we define matrix

Hi(x) ∈ C1
(

[0, 1];Sσ(2nα,d k2e)
)

and the matrix of its boundary values Hb ∈ Sσ(2nα,d k2e),

which contains the terms induced by integration-by-parts. That is, Hi(x) and Hb satisfy

∫ 1

0

(
d

dx

(
(ηd k2e(Dα−1u)))′Hi(x)ηd k2e(Dα−1u)

))
dx

=

[(
ηd k2e(Dα−1u)

)′
(Hi(x))ηd k2e(Dα−1u)

]1

x=0

= (ηd k2e(Dα−1
b u))′Hbη

d k2e(Dα−1
b u) (3.7)

The complete quadratic representation is then characterized by the set I as follows

I :=

{
Fb ∈ Fb(k, α), Fi ∈ Fi(k, α) | (ηd k2e(Dα−1

b u))′(Fb +Hb)η
d k2e(Dα−1

b u)

+

∫ 1

0

[
(ηd k2e(Dαu)′Fi(x)ηd k2e(Dαu) +

d

dx

(
(ηd k2e(Dα−1u)))′Hi(x)ηd k2e(Dα−1u)

)]
dx

}
(3.8)

The example below illustrates matrices Hb and Hi(x) for an element of set (3.8).

Example 3.1.3 Consider (3.4) with fb = 2u(t, 1)∂xu(t, 0), fi(x, (u, ∂xu)) = sin2(x)u∂xu+

2u∂2
xu, yielding k = 2, α = 2, and D2u = (u, ∂xu, ∂

2
xu). Since the expression is

homogeneous of degree k = 2, we replace the inhomogeneous vector ηd 2
2e(D2u) by

a homogeneous vector (D2u){
2
2
} to obtain the quadratic expressions with (D1

bu){1} =

(u(t, 1), ∂xu(t, 1), u(t, 0), ∂xu(t, 0)), (D2u){1} = (u, ∂xu, ∂
2
xu). The representation (3.2)

is defined by

Fb =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


, Fi(x) =


0 − sin2(x)

2 1

− sin2(x)
2 0 0

1 0 0

 ,
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and the terms characterizing the multiplicity of the integral as described by

d

dx

(
(Dα−1u)′Hi(x)(Dα−1u)

)

= (Dαu)′


d
dx
h11(x) d

dx
h12(x) + h11(x) 1

2
h12(x)

d
dx
h12(x) + h11(x) d

dx
h22(x) + h12(x) h22(x)

1
2
h12(x) h22(x) 0

 (Dαu) (3.9)

and (3.8) as given by

(D1
bu)
′Hb(D

1
bu) = (D1

bu)
′

 −Hi(1) 0

0 Hi(0)

 (D1
bu).

Note that the non-uniqueness associated with the algebraic relations in the vector de-

scribing the quadratic representation is characterized by the setsFb andFi. The Fundamen-

tal Theorem of Calculus shows the non-uniqueness of the integral expression associated

with the differential relations of the elements in Dαu, characterizing the set (3.8).

In order to simplify the presentation of the next result, let us introduce the function

H̄i(x), which satisfies

d

dx

(
(ηd k2e(Dα−1u))′Hi(x)ηd k2e(Dα−1u)

)
= (ηd k2e(Dαu))′H̄i(x)ηd k2e(Dαu) (3.10)

and allows us to denote the quadratic form in the integrand of (3.8) in terms of matrix

Fi(x)+H̄i(x). The quadratic-like characterization of the integrand in terms of the algebraic

and the differential relations leads to conditions for integral inequalities in terms of matrix

inequalities as follows:

Theorem 3.1.4 If there exist Fb ∈ Fb, Fi(x) ∈ Fi, satisfying (3.1)-(3.2), and Hi(x) ∈

C1([0, 1]), yielding Hb as in (3.8) and H̄i(x) as in (3.10) such that

(ηk̄(Dα−1
b u))′ (Fb +Hb) η

k̄(Dα−1
b u) ≥ 0 ∀u ∈ Ub, (3.11)

33



Fi(x) + H̄i(x) ≥ 0 ∀x ∈ [0, 1], (3.12)

where k̄ =
⌈
k
2

⌉
, then inequality (3.4) holds in the subspace defined by Ub.

Proof: For given polynomials fb and fi satisfying k = max(deg(fb), deg(fi)) we can

express an integral expression as in (3.4). Let

φ(u) = fb(D
α−1
b u) +

∫ 1

0

fi(x,D
αu) dx.

Using the quadratic forms as defined in (3.1)–(3.2) with Fb ∈ Fb(k, α), Fi(x) ∈ Fi(k, α),

we have

φ(u) = fb(D
α−1
b u) +

∫ 1

0

fi(x,D
αu) dx

= (ηk̄(Dα−1
b u))′Fbη

k̄(Dα−1
b u) +

∫ 1

0

(ηk̄(Dαu))′Fi(x)ηk̄(Dαu) dx.

Following the definition of set I in (3.8) and the definition of H̄i in (3.10), we obtain

φ(u) = (ηk̄(Dα−1
b u))′(Fb +Hb)η

k̄(Dα−1
b u)

+

∫ 1

0

(ηk̄(Dαu))′
(
Fi(x) + H̄i(x)

)
ηk̄(Dαu) dx. (3.13)

Hence, if the boundary term satisfies (3.11), and the integral term satisfies (3.12) then

φ(u) ≥ 0, ∀u ∈ Ub. �

Note that inequality (3.12) is a differential matrix inequality since the elements H̄i(x)

involve continuously differentiable functions and their derivatives.
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3.2 Verifying Integral Inequalities with Integral Constraints

In some PDE analysis applications (an example is the computational formulation in Chap-

ter 5), we require verifying an integral inequality subject to a number of integral constraints.

That is, the following class of problems

∫ 1

0
fi(θ,D

αu) dθ ≥ 0,

subject to∫ 1

0
si(θ,D

αu) dθ ≥ 0, i = 1, 2, . . . , r. (3.14)

where fi is described as (3.2) and

si(x,D
αu) =

(
ηd k2e(Dαu)

)′
Si(x) ηd k2e(Dαu)

with Si : [0, 1]→ Sσ(nα,d k2e).

The approach we develop here is reminiscent of the S-procedure [90] for LMIs. The S-

procedure provides conditions under which a particular quadratic inequality holds subject

to some other quadratic inequalities (for example, within the intersection of several ellip-

soids). Similar conditions for checking polynomial inequalities within a semi-algebraic set

were developed in [81, 84] thanks to Putinar’s Positivstellensatz [65, Theorem 2.14]. How-

ever, current machinery for including integral constraints includes multiplying the integral

constraint and subtracting it from the inequality (see Proposition 9 in [81]). In the follow-

ing, we propose an alternative to the latter method that can be used to verify the feasibility

problem (3.14).

Consider the following set of integral constraints

S =

{
u ∈ Cα[0,1] |

∫ 1

0

si(θ,D
αu) dθ ≥ 0, i = 1, 2, . . . , r

}
. (3.15)
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Note that in this setting, we can also represent sets as
{
u |
∫ 1

0
g(θ,Dαu) dθ = 0

}
by se-

lecting s1 = g and s2 = −g.

Define

vi(t, x) :=

∫ x

0

si(θ,D
αu) dθ, (3.16)

which satisfies 
vi(t, 0) = 0,

∂xvi(t, x)− si(x,Dαu(t, x)) = 0,

(3.17)

for i = 1, 2, . . . , r. Using (3.16), we can represent S as

S =
{
u ∈ Cα[0,1] | vi(t, 1) ≥ 0, i = 1, 2, . . . , r

}
.

Lemma 3.2.1 Consider problem (3.14) and let t ∈ T ⊆ R≥0. Let v(t, x) = [ v1(t,x) ··· vr(t,x) ]′

and s(x,Dαu) = [ s1(x,Dαu) ··· sr(x,Dαu) ]′. If there exists a function m : T × [0, 1] → Rr

and a vector n ∈ Rr
≥0 such that

∫ 1

0

fi(x,D
αu) dx−n′v(t, 1)+

∫ 1

0

m′(t, x)
(
∂xv(t, x)−s (x,Dαu(t, x))

)
dx > 0, (3.18)

for all u ∈ U and all t ∈ T , then (3.14) is satisfied.

Proof: From (3.17), we have that for any m : R≥0 × [0, 1]→ Rr

m′(t, x) (∂xv(t, x)− s(x,Dαu(t, x))) = 0, ∀x ∈ [0, 1].

Hence, since v and u are related according to (3.17), we obtain

∫ 1

0

m′(t, x) (∂xv(t, x)− s(x,Dαu(t, x))) dx = 0.
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Consequently, if inequality (3.18) is satisfied, we infer

∫ 1

0

fi(x,D
αu) dx > n′v(t, 1), ∀t ∈ T .

Finally, since n′v(t, 1) ≥ 0, for all u ∈ S, we conclude that problem (3.14) is verified. �

Note that inequality (3.18) is a particular case of (3.4). In order to incorporate the inte-

gral constraints, we introduced the (dummy) dependent variables vi(t, x), satisfying (3.17),

and their partial derivative with respect to x.

3.2.1 Semidefinite Programming Formulation

Whenever a matrix Fi(x) is a polynomial of the variable x and we impose polyno-

mial dependence of H̄i(x) on the variable x, inequality (3.12) can be addressed by a

straightforward application of Putinar’s Positivstellensatz [65, Theorem 2.14] or Corol-

lary 2.3.4. Note that the set [0, 1] = [0, 1], can be described as the semi-algebraic set

{x|[0, 1](x) := x(1− x) ≥ 0}.

Corollary 3.2.2 For Fi(x)+H̄i(x) ∈ RnM×nM [x], if there exists N(x) ∈ ΣnM×nM [x] such

that

Fi(x) + H̄i(x)−N(x)[0, 1](x) ∈ ΣnM×nM [x] (3.19)

then (3.12) holds.

If the coefficients of Fi(x) and H̄i(x) depend affinely in unknown parameters and the

degree of N(x) is fixed, checking whether (3.19) holds can be cast as a feasibility test of a

convex set of constraints, an SDP, whose dimension depends on the degree of Fi(x)+H̄i(x)

and N(x) and on the dimension of matrix Fi(x) + H̄i(x) which depends on the degree k

and the order α as in (3.1)-(3.2).

Remark 3.2.3 Although Positivstellensatz gives necessary and sufficient conditions for check-

ing inequality (3.12), in order to make these conditions computationally tractable the de-
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gree of the sum-of-squares polynomial N(x) in (3.19) must be fixed, hence yielding only

sufficient conditions for a given value of deg(N(x)). �

The formulation of inequalities (3.11) and (3.12) is possible thanks to the application

of the Fundamental Theorem of Calculus to characterize the set of quadratic-like repre-

sentations of an integral inequality, as described by the set (3.8). The terms introduced in

the integrand by matrix Hi do not affect the value of the integral and allow for a test for

positivity based on the positivity of the matrices in the quadratic-like representation. This

is similar to the quadratic representation that is used in sum-of-squares when checking pos-

itivity of a polynomial. Also, for polynomial expressions, the algebraic relations in the

quadratic representation of integrand polynomials are here defined in terms of functions,

(see (3.6)) instead of scalars. With the solution to (3.11), we can verify inequalities in

subspaces as in (3.3), incorporating boundary values of the dependent variables.

3.3 Integral Inequalities for Stability Analysis of PDEs

In what follows, we present the class of PDE systems and Lyapunov functionals studied in

this chapter. Consider the following PDE system

∂tu(t, x) = F (x,Dαu(t, x)) , t > t0, x ∈ [0, 1], (3.20)

u(t0, x) = u0(x) ∈ M ⊂ Hq([0, 1];Rn), where q ∈ N≥0. Let F (x,Dαu) = A u, where

A is an operator defined onM, a closed subset ofHq
[0,1].

Theorem 3.3.1 Consider system (3.20). Suppose there exist a function V ∈ C1[t] , with

V (0) = 0, and scalars c1, c2, c3 ∈ R>0 such that

c1‖u‖2
Hq

[0,1]
≤ V (u) ≤ c2‖u‖2

Hq
[0,1]
, (3.21)

38



and

∂tV (u) ≤ −c3‖u‖2
Hq

[0,1]
, (3.22)

along the solutions of (3.20), then theHq
[0,1]-norm of the trajectories of (3.20) satisfy

‖u(t, x)‖2
Hq

[0,1]
≤ c2

c1

‖u0(x)‖2
Hq

[0,1]
e
− c3
c2

(t−t0)
, t > t0 (3.23)

where u0 = u(t0, x).

Proof: From (3.21)-(3.22), one has
dV (u)
dt

V (u)
≤ − c3

c2
. Since

dV (u)
dt

V (u)
= d(ln(V (u)))

dt
, the integral

in time of the above expression over [t0, t] yields

∫
[t0,t]

d (ln(V (u(τ, x))))

dτ
dτ ≤ −c3

c2

(t− t0)

ln(V (u(t, x)))− ln(V (u(t0, x))) ≤ −c3

c2

(t− t0)

V (u(t, x))

V (u(t0, x))
≤ e

−
c3

c2

(t−t0)

V (u(t, x)) ≤ V (u(t0, x))e
−
c3

c2

(t−t0)

.

Finally (3.23) is obtained by applying the bounds of (3.21) on the above inequality. �

Remark 3.3.2 The above stability result is analogous to the stability theorems for nonlin-

ear ODEs [61]. However, in the context of PDEs, one has to consider the norm in which

the stability properties are defined. Next, we describe a class of Lyapunov functionals that

one has to consider to prove stability in someHq
[0,1]-norm.

We consider candidate Lyapunov functionals of the form

V (u) =
1

2

∫ 1

0

(Dqu)′P (x)(Dqu) dx, (3.24)

with P (x) > 0, ∀x ∈ [0, 1] to study stability in Hq
[0,1]. That is, V (u) is the squared P (x)-
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weightedHq
[0,1]-norm. Since

λm(P )‖u‖2
Hq

[0,1]
≤ V (u) ≤ λM(P )‖u‖2

Hq
[0,1]
,

V (u) is equivalent to theHq
[0,1]-norm.

Remark 3.3.3 For q1 < q2, the spaceHq1
[0,1] is embedded inHq2

[0,1] [33, Sec 5.6]. Therefore,

stability inHq2
[0,1]-norm implies stability inHq1

[0,1]-norm, but the converse does not hold.

It turns out that, if we choose Lyapunov functional (3.24), the conditions of Theo-

rem 3.3.1 become integral inequalities.

Proposition 3.3.4 If there exists a function P (x) and positive scalars ε1, ε2 such that

∫ 1

0

[(Dqu)′P (x)(Dqu)− ε1(Dqu)′(Dqu)] dx ≥ 0 (3.25a)

−
∫ 1

0

[2(Dqu)′P (x)F (x,Dαu) + ε2(Dqu)′(Dqu)] dx ≥ 0 (3.25b)

then theHq
[0,1]-norm of solutions to (3.20) satisfy (3.23) with c1 = λm(P (x)), c2 = λM(P (x)),

and c3 = ε2, i.e., the solutions to (3.20) converge to the null solution in theHq
[0,1]-norm ex-

ponentially.

Inequalities (3.25a)-(3.25b) are integral inequalities such as the ones studied in Sec-

tion 3.1. The sets Ub as in (3.3) associated to the inequalities are defined by the domain of

the PDE operators. The results of Sections 3.1 can therefore be applied to (3.25a)-(3.25b)

whenever the integrand is a polynomial on the dependent variables.

3.4 Examples

In this section, we illustrate the results of this chapter with three examples. We begin

with the problem of minimizing the constant in the Poincaré inequality. We then apply
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the tools developed to solve the Lyapunov inequalities (3.25a) and (3.25b) for two PDE

systems, namely, the transport equation and a system of coupled nonlinear PDEs with

spatially varying coefficients.

3.4.1 Poincaré inequality

Consider ∫ 1

0

(
C(∂xu)2 − u2

)
dx ≥ 0, (3.26)

with u(t, 0) = u(t, 1) = 0, which is an integral inequality of the form (3.4). Notice that the

integrand is affine on C. Such an inequality holds for all u ∈ H1
[0,1] and establishes bounds

for ‖u‖2
L2

[0,1]
in terms of ‖(∂xu)‖2

L2
[0,1]

. Let U =
{
u ∈ H1

[0,1] | u(t, 0) = u(t, 1) = 0
}

. We

are interested in obtaining a tight bound for (3.26), i.e., to solve

minimize C

subject to∫ 1

0
(C(∂xu)2 − u2) dx ≥ 0, ∀u ∈ U , (3.27)

with [0, 1] = [0, 1] and u(t, 0) = u(t, 1) = 0. The results of Section 3.1 can now be

applied since the integrand involves only u and its spatial derivative ∂xu. Following Propo-

sition 3.1.4, problem (3.27) can be relaxed (upper-bounded) as

minimize
h

C

subject to −1 + ∂xh(x) h(x)

h(x) C

 ≥ 0, ∀x ∈ [0, 1]. (3.28)
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By imposing a polynomial structure to h(x) and applying the Positivstellensatz as de-

scribed in Section 3.2.1, (3.28) holds if the following SOSP is satisfied

minimize
h,N

C

subject to −1 + ∂xh(x) h(x)

h(x) C

+N(x)x(x− 1) ∈ Σ2×2[x],

N(x) ∈ Σ2×2[x]. (3.29)

We solve Problem (3.29) by fixing different degrees of polynomial h(x) (with deg(N(x)) =

deg(h(x))+2). Figure 3.1 depicts the optimal value C∗ as a function of the degree of h(x).

The figure also presents the optimal bound π−2 for the problem [85].

As it can be observed by increasing the degree of the polynomials up to 35, there is

still a gap between the bound obtained from the proposed method and the optimal constant

in the Poincaré inequality. This discrepancy results from the fact that, by Weierstrass’

theorem, only continuous functions defined on a closed interval [a, b] ⊂ R can be uniformly

deg(h)

0 5 10 15 20 25 30 35

C
∗

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Optimal values for Problem (3.29) as a function of the degree of h(x).
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approximated as closely as desired by polynomial functions.

To illustrate, in the following, we derive the function h(x) that corresponds to the op-

timal value C∗ = 1
π2 and show that this is not a continuous function on [0, 1]. If we set

C = 1
π2 in (3.28), we have

M(x) =

−1 + ∂xh(x) h(x)

h(x) 1
π2

 ≥ 0, x ∈ [0, 1]. (3.30)

For the optimal C∗, the function h(x) should be such that the rank of M(x) in (3.30) drop

by one and the inequality lose strictness. That is, M(x) can be represented as

M(x) =

M1(x)

M2(x)

[M1(x) M2(x)

]
=

 M2
1 (x) M1(x)M2(x)

M1(x)M2(x) M2
2 (x)

 .
Then, M2 = 1

π
, M1 = πh(x), and M2

1 = −1 + ∂xh(x). Solving the nonlinear differential

equation ∂xh(x)−π2h2(x)− 1 = 0 gives h(x) = 1
π

tan (πx+ c), where c is an integration

constant. Since h(x) is not a continuous function over the [0, 1] domain, a polynomial

approximation of h(x) = 1
π

tan (πx+ c) may not have satisfactory convergence properties.

This justifies the gap in Figure 3.1. However, using polynomial bases in h(x) provides a

means based on SDPs to upper bound the optimal value C∗. �

3.4.2 Transport Equation

Consider the equation

∂tu = −∂xu x ∈ [0, 1], t > 0 u(t, 0) = 0, (3.31)
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which gives Ub =
{
u ∈ C2([0, 1]) | [ 0 1 ]

[
u(t,1)
u(t,0)

]
= 0
}
. Given λ > 0, let

V (u) =
1

2

∫ 1

0

p(x)u2(x) dx,

be the candidate function to certify

−λV (u)− V̇ (u) =

∫ 1

0

(
−1

2
λp(x)u2(x) + p(x)u∂xu(x)

)
dx ≥ 0

(proving the exponential stability with convergence rate λ). We apply Theorem 3.1.4 to the

Lyapunov inequalities in Proposition 3.3.4 to obtain

p(x) > 0, ∀x ∈ [0, 1], (3.32a)

 u(t, 1)

u(t, 0)


′  −h(1) 0

0 h(0)


 u(t, 1)

u(t, 0)

 > 0, ∀

 u(t, 1)

u(t, 0)

 ∈ Ub, (3.32b)

M(x) =
1

2

 −λp(x)− ∂xh(x) h(x) + p(x)

h(x) + p(x) 0

 ≥ 0, ∀x ∈ [0, 1]. (3.32c)

We solve (3.32c) by imposing h(x) = −p(x) and the differential equation ∂xh(x) +

λh(x) = 0, to obtain h(x) = −e−λx, which satisfies (3.32a) (i.e., −h(x) = p(x) > 0). No-

tice that with p(x) = −h(x) = e−λx the inequality of (3.32c) holds for all x ∈ R. Inequal-

ity (3.32b) is expressed as −h(1)u2(1) > 0, which clearly holds since −h(1) = e−λ > 0.

The inequalities then hold for any λ > 0 which proves the exponential stability of the L2
[0,1]-

norm of the solution for any convergence rate. This is expected as, for bounded domains,

the transport equation presents finite-time stability.

The inequalities in (3.25a)-(3.25b) were also formulated with polynomial weighting

function p(x), with q = 0 (giving Dqu = u) and ε2 = λ. Theorem 3.1.4 is applied

to the resulting inequalities and we use the Positivstellensatz to formulate the SOSP as
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Figure 3.2: Weighting functions proving exponential stability for convergence rates λ ∈
{2, 10}. The red dotted curves depict the solution p(x) = e−λx. The solid blue lines
correspond to the polynomials obtained by solving (3.33).

in Corollary 2.3.4

Find p, h,N

subject to

M(x) +N(x)x(x− 1) ∈ Σ2×2[x],

N(x) ∈ Σ2×2[x]. (3.33)

Solutions to the above inequalities were obtained for λ ∈ (0, 10] (the value λ∗ = 10 was

solved with deg(p(x)) = deg(h(x)) = 30). The numerical results provide polynomial

Lyapunov certificates for the L2
[0,1] stability of the solutions of (3.31). A comparison of the

solution p(x) = e−λx and the numerical solutions are depicted in Figure 3.2. �

In the next example we study the stability of a nonlinear, inhomogeneous PDE.
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3.4.3 System of Nonlinear Inhomogeneous PDEs

Let R > 0. Consider the following PDE


∂tu = 1

R
∂2
xu− (x− 0.5)v∂xw

∂tv = 1
R
∂2
xv + xu+ (x− 0.5)u∂xw

∂tw = 1
R
∂2
xw + xu− x2v,

(3.34)

subject to the boundary conditions u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = w(t, 0) =

w(t, 1) = 0. In order to obtain the asymptotic stability bound in terms of the parameter

R a straightforward approach is to take the energy as the Lyapunov functional. In this

case, the nonlinear terms, given by
(
−1

2
+ x
)

[ u2∂xu3 −u1∂xu3 0 ]′, are removed from the

expression of the time-derivative of the energy and the remaining expression is influenced

only by the linear terms. This choice results in conservatism since the stability may not be

certified by the energy of the state taken as the Lyapunov functional. Instead consider the

weighted L2
[0,1]-norm as a Lyapunov functional candidate and solve (3.25a) and (3.25b) to

obtain P (x), the weighting function. In order to illustrate this solution, we compute the

largest value of parameter R for which stability could be certified both with energy and the

weighted L2
[0,1]-norm.

The results are depicted in Table 3.1.

Table 3.1: Stability intervals for parameter R ∈ (0, R∗] for different degrees of P (x).

deg(P (x)) 0, P (x) = I 1 2 3
R∗ 6.3 10.5 17.5 21
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3.5 Further Discussions: PDEs with Non-Polynomial Non-

linearity

The proposed computational method in this chapter applies to PDEs with polynomial de-

pendence in the dependent and independent variables. In this section, we present hints on

the case where PDEs involve non-polynomial nonlinearity.

Let us first clarify the two different cases of non-polynomial data in the dependent

variable Dαu and non-polynomial data in the independent variable θ in the quadratic-like

integral expression as ∫ 1

0

η′(Dαu)M(θ) η(Dαu) dθ.

For nonlinear η(Dαu), the non-uniqueness of the quadratic forms is related to the algebraic

and differential relations of the entries of vector η(Dαu). For instance, for polynomial

η(u), consider D0u =

u1

u2

 and

η(u) =


u2

1

u1u2

u2
2

 .

We have

η′(u)M(θ)η(u) =


u2

1

u1u2

u2
2


′M(θ) +


0 0 α(θ)

0 −2α(θ) 0

α(θ) 0 0




u2

1

u1u2

u2
2

 .
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For a different nonlinear dependence on u, say trigonometric with

η(u) =


1

sin(u)

cos(u)

 .

Since
∫

[0,1]
α(θ)

(
sin2(u) + cos2(u)− 1

)
dθ = 0, we obtain

η′(u)M(θ)η(u) =


1

sin(u)

cos(u)


′M(θ) +


−α(θ) 0 0

0 α(θ) 0

0 0 α(θ)





1

sin(u)

cos(u)

 .

With the above example, we illustrate that a quadratic-like form can also account for non-

polynomial dependence in the dependent variables. However, existing optimization soft-

ware packages easily handle polynomial vectors, whereas other non-polynomial depen-

dence requires ad-hoc construction methods.

The approach presented in this chapter leads to an infinite-dimensional semidefinite

constraint in terms of the independent variables. This is illustrated using a simple example

below. Consider

∂tu = ∂2
xu+ λ(x)u, u(t, 0) = u(t, 1) = 0.

and the Lyapunov functional V (u) =
∫ 1

0
p(x)u2 dx. Following the steps in Section 3.3 for

stability analysis, p(x) > 0 and in addition ∂tV (u) < 0. After introducing the differential

relation among the dependent variables and accounting for the boundary conditions, we
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obtain the differential matrix inequality


02×2 0

2p(x)λ(x) 0 p(x)

0 0 0 0
p(x) 0 0



+



h3(1) 0

0 −h3(0) 0

∂xh1(x) h1(x) + ∂xh2(x) h2(x)

0 h1(x) 2h2(x) + ∂xh3(x) h3(x)

h2(x) h3(x) 0


≥ 0, ∀x ∈ [0, 1]. (3.35)

Notice that the above differential matrix inequality may be difficult to solve in the general

case (nonlinear problem data). For constant λ, the solution to matrix inequality (3.35) can

be found analytically as

p(x) = ε sin

(√
λ

2
x

)
, h2(x) = −p(x), h3(x) = 0, h1(x) = −2

d

dx
h2(x),

where ε > 0.

However, in order to obtain a finite-dimensional SDP for inequality (3.35), we have to

select a set of basis functions to parametrize the decision variables. In other words, using

the basis set F = {f1(x), . . . , fn(x)}, we can write p(x) =
∑n

i=1 cifi(x) in terms of a finite

number of ci’s. The choice adopted in the chapter is the set of monomials {1, x, x2, . . .}.

The reason for such choice is that the associated differential matrix inequalities like (3.35)

become polynomial matrix inequalities. For this class of matrix inequalities, there exists

efficient numerical optimization softwares such as SOSTOOLS [79]. The numerical exam-

ples in the chapter take advantage of these software tools.
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The proposed formulation in terms of matrix inequalities does not impose polynomial

dependence. However, in order to obtain solutions that take advantage of convex optimiza-

tion tools, we require the problem data to be polynomial.

3.6 Conclusions

This chapter proposed tests for positivity of integral expressions with integrands that are

polynomial on the dependent variables. This was motivated by inequalities encountered

in Lyapunov analysis of PDEs. A set of quadratic-like representations for the polynomial

integrand is obtained thanks to the Fundamental Theorem of Calculus, which embeds the

boundary values of the dependent variables. The positivity of the integral is then studied by

analyzing the matrices associated with the quadratic-like representation. Under the assump-

tion that the integrand is also polynomial in the independent variable, matrix positivity tests

are cast as SDPs. We then studied integral inequalities from Lyapunov stability conditions

for PDEs. The proposed Lyapunov functionals were given by the weightedHq
[0,1]-norms.

In the subsequent chapter, we formulate dissipation inequalities for input-output anal-

ysis of PDEs. We show that a suitable choice of storage functional structure converts the

input-output analysis problem into checking a set of integral inequalities. We solve these

inequalities based on the methodology developed here.
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Chapter 4

Dissipation Inequalities for

Input-State/Output Analysis of PDEs

In the previous chapter, we developed tools for verifying integral inequalities and applied

these tools to the Lyapunov stability analysis problem of PDEs.

Probably more important than stability analysis is the input-state or input-output anal-

ysis problem of PDEs. To this end, we use dissipation inequalities, which are widely em-

ployed in the context of ODEs [118]. In particular, we are interested in input-state/output

properties, such as, passivity, reachability, induced input-output norms and ISS. For each

of these properties, we formulate the corresponding dissipation inequality.

We consider PDEs with inputs and outputs that are defined over the domain and PDEs

with inputs and outputs at the boundaries. For these systems, the formulation based on

dissipation inequalities allows us to characterize input-state/output properties in the context

of appropriate Sobolev norms. Furthermore, it enables us to study the interconnections of

PDE systems, in which we propose small gain conditions. Also, we demonstrate that the

interconnection results can be extended to ODE-PDE interconnections.

In the case of polynomial data, we show that the choice of the weighted Sobolev norms

as the storage functionals converts the dissipation inequalities into integral inequalities that
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can be solved by SOS programming based on the method introduced in Chapter 3.

We illustrate these discussions by several examples.

Preliminary results on the material presented in this chapter were presented in the 2014

53rd IEEE Conference on Decision and Control [2]. The journal version of the results,

which included the small gain results, was also disseminated in [6].

4.1 PDEs with In-Domain Inputs and In-Domain Outputs

In this section, we consider the class of PDE systems described by


∂tu(t, x) = F (x,Dαuu(t, x), Dαdd(t, x)) ,

y(t, x) = H(x,Dδu), (t, x) ∈ R≥0 × Ω,

B
[
Dαu−1u(t,1)

Dαu−1u(t,0)

]
= 0, B

[
Dαd−1d(t,1)

Dαd−1d(t,0)

]
= 0,

(4.1)

and initial conditions u(0, x) = u0(x), where 0 ≤ δ ≤ αu. The dependent variables

u : R≥0 × Ω → Rnu , d : R≥0 × Ω → Rnd , and y : R≥0 × Ω → Rny represent states,

inputs, and outputs, respectively, and B is a matrix of appropriate dimension defining the

boundary conditions. We assume throughout the section that the solutions to (4.1) possess

sufficient regularity for all required derivatives to exist.

In order to study input-state/output properties of system (4.1), we define each property

as follows.

Definition 4.1.1

A. Passivity: System (4.1) is passive, if it satisfies the following inequality

〈d, y〉L2
[0,∞),Ω

≥ 0, (4.2)

whenever u0(x) ≡ 0, ∀x ∈ Ω.
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B. Hp-to-Hq
Ω Reachability: System (4.1) is Hp-to-Hq

Ω reachable, if for d ∈ Hp(R≥0 ×

Ω;Rnd) with αd ≥ p, the solutions of (4.1) satisfy

‖u(T, ·)‖HqΩ ≤ β
(
‖d‖Hp

[0,T ),Ω

)
, ∀T > 0 (4.3)

with β ∈ K∞ and u0(x) ≡ 0, ∀x ∈ Ω.

C. InducedHp-to-Hq-norm Boundedness: System (4.1) has a bounded inducedHp-to-

Hq-norm, if for d ∈ Hp(R≥0 × Ω;Rnd) with αd ≥ p and some γ > 0,

‖y‖Hq
[0,∞),Ω

≤ γ‖d‖Hp
[0,∞),Ω

(4.4)

subject to zero initial conditions u0(x) ≡ 0, ∀x ∈ Ω.

D. Dp-Input-to-State Stability in Hq
Ω: System (4.1) is Dp-Input-to-State Stable in the

Hq
Ω-norm, if for d ∈ Wp,∞(Ω;Rnd) with αd ≥ p, some scalar ψ > 0, functions

β, β̃, χ ∈ K∞, and σ ∈ K, it holds that

‖u(t, ·)‖HqΩ ≤ β

(
e−ψtχ

(
‖u0‖HqΩ

))
+ β̃

(
sup
τ∈[0,t)

( ∫
Ω

σ
(
|Dpd(τ, x)|

)
dx
))
, ∀t > 0, ∀u0 ∈ Hq

Ω, (4.5)

where | · | is the Euclidean norm.

Remark 4.1.2 The above definition of passivity was used in [109], where a passivity-based

design strategy for flow control is presented.

Given T > 0 and the information on the Hp
[0,T ),Ω-norm of the input, inequality (4.3)

shows how the Hq
Ω-norm evolves at t = T . In fact, a minimization over β ∈ K∞ results in

an upper bound on the reachable set at time t = T in theHq
Ω-norm.
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In item C in Definition 4.1.1, for the PDE system (4.1), we are interested in estimating

upper bounds on γ∗ > 0 defined as

γ∗ = sup
0<‖d‖Hq<∞

‖y‖Hq
‖d‖Hp

, (4.6)

i.e., the inducedHp-to-Hq-norm.

Note that theDp-ISS property (4.5) assures asymptotic convergence to the null solution

inHq
Ω when d ≡ 0. Moreover, when d 6= 0, as t→∞, the first term on the right-hand side

of (4.5) vanishes, yielding

lim
t→∞
‖u(t, ·)‖HqΩ ≤ β̃

(∫
Ω

‖σ(|Dpd(·, x)|)‖L∞
[0,∞)

dx

)
≤ β̃

(∫
Ω

σ(‖d(t, x)‖Wp,∞
[0,∞)

) dx

)
,

(4.7)

wherein, the fact that σ, β ∈ K∞ ⊂ K is used. Hence, when all the spatial derivatives of

the input up to order p are bounded in L∞[0,∞), the state u is bounded in the Hq
Ω-norm. This

is analogous to the ISS property for ODEs [113].

Remark 4.1.3 The reachability property is often referred to as controllability [64, Section

9.6.7] and the induced norm boundedness property is often studied in the context of trace

regularity (e.g. see the trace regularity results for hyperbolic PDEs [64, Section 8A] and

the Schrödinger equation [64, Section 10.9.3]).

In the sequel, we use the concept of zero-state detectability for PDEs, which is defined next

(for the case of ODEs refer to [46, p. 362]).

Definition 4.1.4 A system is zero-state detectable (ZSD) inHq
Ω, if ‖y‖HqΩ = 0 implies ‖u‖HqΩ = 0.

Zero-state detectability imposes constraints on H in (4.1) (‖H(x,Dδu)‖HqΩ = 0 ⇒

‖u‖HqΩ = 0). In the special case of H(x,Dδu) = h(x)u and q = 0, this is equivalent to

@x ∈ Ω such that h(x) = 0, thereby y = 0 implies u = 0.
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A powerful tool in the study of robustness and input-state/output properties of systems

is dissipation inequalities [135, 51]. For linear ODEs, quadratic storage functions of states

are both necessary and sufficient solutions to dissipation inequalities with quadratic supply

rates [124]. For polynomial ODEs, [31] proposes an approach for constructing polynomial

storage functions based on SOSPs.

For PDEs, dissipation inequalities were proposed for particular systems. For linear

time-varying hyperbolic PDEs, the weighted L2-norm functional was considered as a cer-

tificate for ISS in [97]. In [20], ISS of a semi-linear diffusion equation was analyzed using

the weighted L2-norm as the storage functional. However, the formulation of dissipation

inequalities for PDEs and the construction of storage functionals in the latter contributions

is based on ad hoc methods.

In the next theorem, we formulate the dissipation inequalities associated with properties

A-D in Definition 4.1.1, which can be applied to a larger class of PDEs, including nonlinear

PDEs.

Theorem 4.1.5 Consider the PDE system described by (4.1). If there exist a positive

semidefinite storage functional1 S(u) ∈ C1[t], scalars γ, ψ > 0, and functions β1, β2 ∈

K∞, α, σ ∈ K satisfying ψ|U | ≤ α(|U |), such that

A) ∂tS(u) ≤ 〈d, y〉L2
Ω
, ∀t ≥ 0, (4.8)

then, system (4.1) is passive as in (4.2).

B) β1(‖u‖HqΩ) ≤ S(u), (4.9)

∂tS(u) ≤ γ2〈d, d〉HpΩ , ∀t ≥ 0, (4.10)

1 We refer to a functional J(u) as positive semidefinite, if it satisfies J(0) = 0 and J(u) ≥ 0, ∀u 6= 0.
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then, system (4.1) isHp-to-Hq
Ω reachable as in (4.3) with β(·) = β−1

1 (γ(·)).

C) ‖y‖HqΩ = 0⇒ ‖u‖HqΩ = 0, (4.11)

∂tS(u) ≤ −〈y, y〉HqΩ + γ2〈d, d〉HpΩ , ∀t ≥ 0 (4.12)

then, system (4.1) is asymptotically stable and its inducedHp-to-Hq-norm is bounded by γ

as in (4.4).

D) β1(‖u‖HqΩ) ≤ S(u) ≤ β2(‖u‖HqΩ), (4.13)

∂tS(u) ≤ −α(S(u)) +

∫
Ω

σ(|Dpd|) dx, ∀t ≥ 0, (4.14)

then system (4.1) is Dp-ISS in Hq
Ω and satisfies (4.5) with χ = β2, β = β−1

1 ◦ 2 and

β̃ = β−1
1 ◦ 2

ψ
.

Proof: Each item is proven in turn:

A) Integrating both sides of (4.8) over time from 0 to∞ yields

∫ ∞
0

∂tS(u) dt ≤
∫ ∞

0

∫
Ω

d′y dx dt.

That is,

lim
t→∞

S (u(t, x))− S (u0) ≤
∫ ∞

0

∫
Ω

d′y dx dt.

By hypothesis, S(u) is positive semidefinite. Hence, for u(0, x) = 0, we have S(u(0, x)) = 0.

Moreover, limt→∞ S (u(t, x))) ≥ 0. Therefore, we obtain the passivity estimate (4.2).

B) Integrating both sides of (4.10) over time from 0 to T yields

∫ T

0

∂tS(u) dt ≤ γ

∫ T

0

‖d‖2
HqΩ

dt.
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That is,

S(u(T, x))− S(u(0, x)) ≤ γ‖d‖Hp
[0,T ),Ω

.

Noting that, with u(0, x) ≡ 0, from (4.9), we have

β1(‖u(T, ·)‖HqΩ) ≤ S(u(T, x)) ≤ γ‖d‖Hp
[0,T ),Ω

.

Since β1 ∈ K∞, its inverse exists and belongs to K∞. Thus,

‖u(T, ·)‖HqΩ ≤ β−1
1

(
γ‖d‖Hp

[0,T ),Ω

)
.

Therefore, an estimate of the reachable set at t = T in terms of ‖d‖Hp
[0,T ),Ω

is attained.

C) Subject to zero inputs d ≡ 0, (4.12) becomes

∂tS(u) ≤ −‖y‖2
HqΩ
. (4.15)

Inequality (4.15) implies that the time derivative of the storage functional S(u) is negative

semidefinite. Moreover, from Definition 3, condition (4.11) is equivalent to system (4.1)

being ZSD inHq
Ω. Thus, ∂tS(u) = 0 only if ‖u‖HqΩ = 0. Hence, from LaSalle’s invariance

principle [70, Theorem 3.64, p. 161], it follows that u converges to the null solution u = 0

inHq
Ω-norm asymptotically.

Furthermore, by integrating both sides of (4.12) from 0 to∞, we obtain

∫ ∞
0

∂tS(u) dt ≤ −
∫ ∞

0

‖y‖2
HqΩ

dt+ γ2

∫ ∞
0

‖d‖2
HpΩ

dt.

That is,

lim
t→∞

S(u(t, x))− S(u0) ≤ −
∫ ∞

0

‖y‖2
HqΩ

dt+ γ2

∫ ∞
0

‖d‖2
HpΩ

dt.
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Since u0(x) ≡ 0, x ∈ Ω, we have

lim
t→∞

S(u(t, x)) ≤ −
∫ ∞

0

‖y‖2
HqΩ

dt+ γ2

∫ ∞
0

‖d‖2
HpΩ

dt,

and because S(·) is positive semidefinite, we obtain

∫ ∞
0

‖y‖2
HqΩ

dt ≤ γ2

∫ ∞
0

‖d‖2
HpΩ

dt.

D) By rearranging the terms in (4.14) and noting that ψ|U | ≤ α(|U |), we have ∂tS(u) +

ψS(u) ≤
∫

Ω
σ(|Dpd|) dx. Multiplying both sides of the above inequality by the strictly

increasing, positive function eψt, we have eψt (∂tS(u) + ψS(u)) ≤ eψt
∫

Ω
σ(|Dpd|) dx.

Then, it follows that
d

dt

(
eψtS

)
≤ eψt

∫
Ω

σ(|Dpd|) dx. (4.16)

Integrating both sides of inequality (4.16) from 0 to t gives

eψtS(u(t, x))− S(u(0, x)) ≤
∫ t

0

eψτ
(∫

Ω

σ(|Dpd(τ, x)|) dx
)
dτ

≤
(∫ t

0

eψτ dτ

)
sup
τ∈[0,t)

(∫
Ω

σ(|Dpd(τ, x)|) dx
)

≤ 1

ψ
(eψt − 1) sup

τ∈[0,t)

(∫
Ω

σ(|Dpd(τ, x)|) dx
)

≤ eψt

ψ
sup
τ∈[0,t)

(∫
Ω

σ(|Dpd(τ, x)|) dx
)
, (4.17)

where Hölder’s inequality is used in the second inequality above. Dividing both sides of

the last inequality above by the positive term eψt gives

S(u) ≤ e−ψtS(u0) +
1

ψ
sup
τ∈[0,t)

(∫
Ω

σ(|Dpd(τ, x)|) dx
)
.
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Using (4.13), we infer that

β1(‖u‖HqΩ) ≤ e−ψtβ2(‖u0‖HqΩ) +
1

ψ
sup
τ∈[0,t)

(∫
Ω

σ(|Dpd(τ, x)|) dx
)
. (4.18)

Since β1 ∈ K∞, its inverse exists and belongs to K∞. Hence, taking the inverse of β1 from

both sides of (4.18) yields

‖u‖HqΩ ≤ β−1
1

(
e−ψtβ2(‖u0‖HqΩ) +

1

ψ
sup
τ∈[0,t)

( ∫
Ω

σ(|Dpd(τ, x)|) dx
))
,

and, applying inequality (1.11), it follows that

‖u‖HqΩ ≤ β−1
1

(
2e−ψtβ2(‖u0‖HqΩ)

)
+ β−1

1

(
2

ψ
sup
τ∈[0,t)

( ∫
Ω

σ(|Dpd(τ, x)|) dx
))
,

and (4.5) is obtained with χ = β2, β = β−1
1 ◦ 2 and β̃ = β−1

1 ◦ 2
ψ

. �

Remark 4.1.6 An important property of PDE systems, in particular in the study of hyper-

bolic systems, is conservativeness [133, 132], i.e., the system satisfies the relation

‖u(T, ·)‖2
L2

Ω
− ‖u0‖2

L2
Ω

=

∫ T

0

‖d‖2
L2

Ω
dt−

∫ T

0

‖y‖2
L2

Ω
dt. (4.19)

For p = q = 0, if we consider the squared L2
Ω-norm as the storage functional, i.e., S(u) =

‖u‖2
L2

Ω
=
∫

Ω
u2 dx, inequality (4.12) in Theorem 4.1.5 can be re-written as

∂t

(
‖u‖2

L2
Ω

)
≤ γ2‖d‖2

L2
Ω
− ‖y‖2

L2
Ω
.

Integrating both sides of the above inequality over time from 0 to T > 0 yields

‖u(T, ·)‖2
L2

Ω
− ‖u0‖2

L2
Ω
≤ γ2

∫ T

0

‖d‖2
L2

Ω
dt−

∫ T

0

‖y‖2
L2

Ω
dt.

Then, in the special case when γ = 1 and equality holds, we obtain (4.19). Thus, conserva-
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tive PDEs are special cases of PDEs with bounded induced L2-to-L2-norm. That is, since

T > 0 is arbitrary, the induced L2-to-L2-norm of the system is 1.

We illustrate Theorem 4.1.5 using an example.

Example 4.1.7 (ISS Analysis of Burgers’ Equation) Consider the following PDE system

∂tu(t, x) = ∂2
xu(t, x)− u(t, x)∂xu(t, x) + d(t, x),

y(t, x) = u(t, x), x ∈ [0, 1], t > 0 (4.20)

subject to u(0, t) = u(1, t) = 0. In the following, we show that for the above system the

following storage functional

S(u) =
1

2

∫ 1

0

u2(t, x) dx. (4.21)

satisfies inequalities (4.13), and (4.14). In other words, using storage functional (4.21),

we demonstrate that the system is D0-ISS in L2
Ω. Note that the storage functional (4.21)

satisfies c
2

∫ 1

0
u2 dx ≤ 1

2

∫ 1

0
u2 dx ≤ C

2

∫ 1

0
u2 dx for some 0 < c < 1 and C > 1. Thus,

inequality (4.13) is satisfied. Substituting (4.21) in (4.14) and noting that ψ|U | ≤ α(|U |),

we have

− ψ

2

∫ 1

0

u2 dx+

∫ 1

0

σ(|d|) dx ≥
∫ 1

0

u

∂tu︷ ︸︸ ︷(
∂2
xu− u∂xu+ d

)
dx. (4.22)

By integration by parts and using the boundary conditions, we have
∫ 1

0
u∂2

xu dx = −
∫ 1

0
(∂xu)2 dx,

and
∫ 1

0
u2∂xu dx = 0. Then, inequality (4.22) gives

− ψ

2

∫ 1

0

u2 dx+

∫ 1

0

σ(|d|) dx ≥ −
∫ 1

0

(∂xu)2 dx+

∫ 1

0

ud dx. (4.23)

In addition, using Hölder and Young inequalities for p = q = 2, we have

∫ 1

0

ud dx ≤
(∫ 1

0

u2 dx

) 1
2
(∫ 1

0

d2 dx

) 1
2

≤ 1

2

∫ 1

0

u2 dx+
1

2

∫ 1

0

d2 dx. (4.24)
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Next, we show that the left hand side of (4.23) is greater than a quantity which is greater

than the right hand side of (4.23). Thus, inequality (4.23) also holds. Applying inequality

(4.24), we check

−ψ
2

∫ 1

0

u2 dx+

∫ 1

0

σ(|d|) dx ≥ −
∫ 1

0

(∂xu)2 dx+
1

2

∫ 1

0

u2 dx+
1

2

∫ 1

0

d2 dx.

Moving the terms involving d and u to the left and the right hand side of the above inequal-

ity, respectively, gives

−ψ
2

∫ 1

0

u2 dx+

∫ 1

0

(∂xu)2 dx− 1

2

∫ 1

0

u2 dx ≥ −
∫ 1

0

σ(|d|) dx+
1

2

∫ 1

0

d2 dx.

By choosing σ(|d|) = d2

2
, we obtain −

(
ψ+1

2

) ∫ 1

0
u2 dx +

∫ 1

0
(∂xu)2 dx ≥ 0. From the

Poincaré inequality, we infer that if we choose ψ and correspondingly α such that ψ+1
2
≤

π2, then the above inequality holds. Consequently, we demonstrated using storage func-

tional (4.21) that system (4.20) is D0-ISS in L2
Ω.

In Section 4.4, we shall demonstrate that for PDEs with polynomial data the dissipation

inequalities can be solved by convex optimization. To this end, we employ the results for

solving integral inequalities provided in Chapter 3.

4.2 PDEs with Boundary Inputs and Boundary Outputs

In this section, we formulate conditions to study the input-output properties of PDEs with

boundary inputs and outputs. Consider the following PDE system


∂tu(t, x) = F (x,Dαu(t, x)) ,

y(t) = h
(
Dβu(t, 0)

)
, (t, x) ∈ R≥0 × Ω

BDα−1u(t, 0) = 0, BDα−1u(t, 1) = w(t),

(4.25)
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and initial conditions u(0, x) = u0(x), where B is a matrix of appropriate dimension,

y : R≥0 → Rny , and w : R≥0 → Rnw . Next, we define input-state/output properties for

PDE (4.25). We assume throughout the section that the solutions to (4.25) have sufficient

regularity for all required derivatives to exist.

Definition 4.2.1

A. Passivity [102]: System (4.25) is passive, if it satisfies the following inequality

〈w, y〉L2
[0,∞)
≥ 0, (4.26)

with u0(x) ≡ 0, ∀x ∈ Ω.

B. L2
[0,∞)-to-Hq

Ω Reachability [102]: System (4.25) is L2
[0,∞)-to-Hq

Ω reachable, if for

∀w ∈ L2(R≥0;Rnw), the solutions of (4.25) satisfy

‖u(T, ·)‖HqΩ ≤ β
(
‖w‖L2

[0,T )

)
, ∀T > 0, (4.27)

with β ∈ K∞ and with u0(x) ≡ 0, ∀x ∈ Ω.

C. InducedL2
[0,∞)-norm Boundedness [102]: System (4.25) has bounded inducedL2

[0,∞)-

norm, if for ∀w ∈ L2(R≥0;Rnw), there exits a γ > 0 such that

‖y‖L2
[0,∞)
≤ γ‖w‖L2

[0,∞)
(4.28)

with zero initial conditions u0(x) ≡ 0, ∀x ∈ Ω.

D. Input-to-State Stability in Hq
Ω: System (4.25) is input-to-state stable in Hq

Ω, if for

∀w ∈ L∞(R≥0;Rnw), there exists a scalar ψ > 0, functions β, β̃, χ ∈ K∞, and
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σ ∈ K such that

‖u(t, ·)‖HqΩ ≤ β

(
e−ψtχ

(
‖u0‖HqΩ

))
+ β̃

(
sup
τ∈[0,t)

σ (|w(τ)|)
)
, ∀t > 0, ∀u0 ∈ Hq

Ω, (4.29)

Remark 4.2.2 The Input-to-State Stability in Hq
Ω property defined above parallels the ISS

property for ODE systems as given in [112]. However, ISS in Hq
Ω property for PDEs

includes bounds on states u defined in the Sobolev norm of interest Hq
Ω, since the state u

belongs to an infinite-dimensional space.

The next result follows from Theorem 4.1.5.

Corollary 4.2.3 Consider the PDE system described by (4.25). If there exist a positive

semidefinite storage functional S(u) ∈ C1[t], scalars γ, ψ > 0, and functions β1, β2 ∈ K∞,

α, σ ∈ K satisfying ψ|U | ≤ α(|U |), such that

A) ∂tS(u) ≤ w′(t)y(t), ∀t ≥ 0, (4.30)

then, system (4.25) satisfies the passivity property (4.26).

B) β1(‖u‖HqΩ) ≤ S(u), (4.31)

∂tS(u) ≤ γ2w′(t)w(t), ∀t ≥ 0, (4.32)

then, system (4.25) satisfies the L2
[0,∞)-to-Hq

Ω reachability property (4.27) with β(·) =

β−1
1 (γ2(·)2).

C) ∂tS(u) ≤ −y′(t)y(t) + γ2w′(t)w(t), ∀t ≥ 0, (4.33)

then system (4.25) is stable and has its induced L2
[0,∞)-norm bounded by γ as in (4.28).
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Figure 4.1: The interconnection of two PDE systems.

D) β1(‖u‖HqΩ) ≤ S(u) ≤ β2(‖u‖HqΩ), (4.34)

∂tS(u) ≤ −α(S(u)) + σ(|w(t)|), ∀t ≥ 0, (4.35)

then system (4.25) is ISS and satisfies (4.29) with χ = β2, β = β−1
1 ◦ 2 and β̃ = β−1

1 ◦ 2
ψ

.

Proof: The proof of Items A, B, and D follows the same lines as the proof of Theo-

rem 4.1.5. For Item C, LaSalle’s invariance principle cannot be used to conclude asymp-

totic stability as was the case in Theorem 4.1.5, since with w ≡ 0 inequality (4.33) is

converted to ∂tS(u) ≤ −y′(t)y(t) which implies that the solutions to (4.25) are stable.

However, y(t) = 0 only contains information about the values at the boundaries; i.e.,

h
(
Dβu(t, 0)

)
= 0, which does not imply u(t, x) = 0 for all (t, x) ∈ R≥0 × Ω. �

4.3 Interconnections

In this section, we consider several interconnection topologies for PDE-PDE or PDE-ODE

systems. We show that, analogous to the ODE-ODE interconnections, once some properties

of the subsystems in an interconnection hold in terms of dissipation inequalities, we can

infer properties of the interconnection.
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Remark that, if a system property holds, it is not necessarily equivalent to the existence

of a storage functional satisfying some dissipation inequality. Though the converse holds

for linear ODEs with quadratic storage functions and supply rates [124], even for nonlinear

ODEs, this is still an open problem [102]. In this section, however, when we refer to

a property of subsystems, we imply that the subsystem satisfies the associated dissipation

inequality. In other words, we are interested in making conclusions about an overall system,

once some property of subsystems is known in terms of dissipation inequalities.

4.3.1 PDE-PDE Interconnections

The next result is a small-gain theorem, which ensures stability or asymptotic stability of

interconnected PDE systems under some assumptions. This demonstrates the applicability

of dissipation inequalities for studying the stability of coupled or large-scale PDE systems.

Theorem 4.3.1 Let

Σi :



∂tui = Fi(x,D
αiuui, D

αidd),

yi = Hi(x,D
δiui), (t, x) ∈ R≥0 × Ω

Bi

[
Dα

i
u−1ui(t,1)

Dα
i
u−1ui(t,0)

]
= 0, Bi

[
Dα

i
d−1di(t,1)

Dα
i
d−1di(t,0)

]
= 0,

(4.36)

for i = 1, 2. Consider the interconnected PDE systems Σ1 and Σ2 as depicted in Figure 4.1.

If Σ1 and Σ2 have induced Hq-to-Hq-norms γ1 and γ2, respectively, in the sense of (4.4)

and certified by dissipation inequality (4.12), then, the interconnected system is stable in

Hq
Ω, provided that

γ1γ2 < 1. (4.37)

Furthermore, if each of subsystems Σ1 and Σ2 are ZSD in Hq
Ω, then asymptotic stability in

Hq
Ω holds for the interconnected system.
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Proof: Let S1 and S2 be two storage functionals for Σ1 and Σ2. By hypothesis, it holds

that

∂tSi ≤ −〈yi, yi〉HqΩ + γ2
i 〈di, di〉HqΩ , i = 1, 2. (4.38)

Let µ be a scalar satisfying γ1 < µ < 1
γ2

. Therefore, γ1γ2 < µγ2 < 1. Let S = S1 + µ2S2.

Then, from (4.38), it follows that

∂tS ≤ −〈y1, y1〉HqΩ + γ2
1〈d1, d1〉HqΩ − µ

2〈y2, y2〉HqΩ + µ2γ2
2〈d2, d2〉HqΩ .

With the interconnection y1 = d2 and y2 = −d1, we have

∂tS ≤ −(1− µ2γ2
2)〈y1, y1〉HqΩ − (µ2 − γ2

1)〈y2, y2〉HqΩ .

Thus, from (4.37) and the definition of µ, it follows that the time derivative of the storage

functional S is non-positive, which, in turn, implies that the interconnected PDE system is

stable in Hq
Ω. Moreover, from ZSD property of Σ1 and Σ2, one can infer that ‖yi‖HqΩ =

0⇒ ‖ui‖HqΩ = 0, i = 1, 2. Hence, ∂tS(u) = 0 only if ‖ui‖HqΩ = 0, i = 1, 2. Consequently,

from LaSalle’s invariance principle [70, Theorem 3.64, p. 161], it follows that (u1, u2)→ 0

as t→∞ inHq
Ω. This completes the proof. �

The next corollary asserts that stability inHq
Ω holds, if both subsystems of interconnec-

tion in Figure 4.1 with boundary inputs and boundary outputs have bounded L2
[0,∞)-norms

and satisfy a small gain criterion.

Corollary 4.3.2 Let

Σ1 :


∂tu1 = F1(x,Dα1

uu1)

y1 = h1(Dβ1
u1(t, 1)),

B1D
α1
u−1u1(t, 0) = w1(t), B1D

α1
u−1u1(t, 1) = 0,
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and

Σ2 :


∂tu2 = F2(x,Dα2

uu2)

y2 = h2(Dβ2
u2(t, 0)),

B2D
α2
u−1u2(t, 0) = 0, B2D

α2
u−1u2(t, 1) = w2(t),

with interconnection w1 = −y2 and w2 = y1. If Σ1 and Σ2 have induced L2
[0,∞)-norms γ1

and γ2, respectively, in the sense of (4.28) and certified by dissipation inequality (4.33),

then, the interconnected system is stable inHq
Ω, provided that γ1γ2 < 1.

Proof: Let S1 and S2 be two storage functionals for Σ1 and Σ2. By hypothesis, it holds

that

∂tSi ≤ −y′iyi + γ2
iw
′
iwi, i = 1, 2. (4.39)

Define µ such that γ1 < µ < 1
γ2

. Therefore, γ1γ2 < µγ2 < 1. Let S = S1 + µ2S2. Then,

from (4.39), it follows that

∂tS ≤ −|y1|2 + γ2
1 |w1|2 − µ2|y2|2 + µ2γ2

2 |w2|2.

With the interconnection y1 = w2 and y2 = −w1, we have

∂tS ≤ −(1− µ2γ2
2)|y1|2 − (µ2 − γ2

1)|y2|2.

Thus, since γ1γ2 < 1, (µγ2)2 < 1 and µ2 > γ2
1 , it follows that the time derivative of the

storage functional S is non-positive, which, in turn, implies that the interconnected PDE

system is stable inHq
Ω. �
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4.3.2 PDE-ODE Interconnections

In the following, we consider interconnection of PDE systems and ODE systems, where

the interconnection is assumed to be at the boundary of the domain. First, we show that if

both the PDE subsystem and the ODE subsystem have bounded induced L2-norm then the

interconnection has bounded induced L2-norm. Secondly, we demonstrate that PDE-ODE

interconnections (cascades) preserve the ISS property, provided that each subsystem is ISS.

Theorem 4.3.3 Consider the following PDE-ODE system subject to dynamic disturbance

at the boundary 

∂tu = F (x,Dαu), x ∈ Ω, t > 0,

y = H(x,Dβu),

Dα−1u(t, 0) = 0,

Dα−1u(t, 1) = z(t).

(4.40)


dX(t)
dt

= f (X(t), d(t)) , d ∈ L2
[0,∞),

z(t) = X(t).

(4.41)

Let (4.40) have bounded inducedL2
Ω-norm η and (4.41) have bounded inducedL2

[0,∞)-norm

γ. Then, the overall interconnection has bounded induced L2
[0,∞)-to-L2

Ω-norm ηγ.

Proof: Since both systems (4.40) and (4.41) have bounded induced L2-norms with L2-

gains η > 0 and γ > 0, respectively, they satisfy the following inequalities

∂tS(u) ≤ −
∫

Ω

y2 dx+ η2z2(t) (4.42)

∂ts(X) ≤ −z2(t) + γ2d2(t). (4.43)
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for storage functional S(u) and storage function s(X). Let us define the following storage

functional for the interconnected system

Σ(u,X) = S(u) + η2s(X). (4.44)

Then, the time derivative of the storage functional yields

∂tΣ(u,X) = ∂tS + η2∂ts(X)

≤ −
∫

Ω

y2 dx+ η2z2(t)− η2z2(t) + η2γ2d2(t)

= −
∫

Ω

y2 dx+ η2γ2d2(t). (4.45)

Therefore, the interconnected system has bounded induced L2
[0,∞)-to-L2

Ω-norm ηγ. �

Theorem 4.3.4 Consider the following ODE-PDE system in cascade interconnection


∂tu = F (x,Dαu), x ∈ [0, 1], t > 0,

Dα−1u(t, 0) = 0,

Dα−1u(t, 1) = z(t).

(4.46)


dX(t)
dt

= f (X(t), d(t)) , d ∈ L∞[0,∞)

z(t) = X(t).

(4.47)

If both systems (4.46) and (4.47) satisfy the ISS property, then the interconnection is ISS,

as well.

Proof: If both systems (4.46) and (4.47) satisfy the ISS property, then there exist storage

function/functionals S for the PDE system and storage function s for the ODE systems,
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such that

∂tS(u) ≤ −α (S(u)) + σ (|X(t)|) , (4.48)

∂ts(X) ≤ −2σ (|X(t)|) + γ(|d(t)|), (4.49)

for some α, σ ∈ K∞ and γ ∈ K. At this point, to show that the ISS-property of the cascade

holds, we consider the following storage functional

Σ(u,X) = S(u) + s(X).

Then, functional Σ satisfies

∂tΣ(u,X) ≤ −α (S(u))− σ (|X(t)|) + γ(|d(t)|). (4.50)

�

4.4 Computation of Storage Functionals

For computational purposes, we assume that the studied PDEs are polynomial in the de-

pendent and independent variables, i.e., functions F and H in (4.1) and functions F and

h in (4.25) are all polynomials. The following structure is also considered as a candidate

storage functional to check the dissipation inequalities given in Theorem 4.1.5 and Corol-

lary 4.2.3:

S(u) =
1

2
〈u, P (x)u〉HqΩ :=

1

2

∫ 1

0

(Dqu)′P (x)(Dqu) dx,

(4.51)
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where, P (x) : Ω → Sn(α+1) is a symmetric positive definite polynomial matrix function

for all x ∈ Ω. This storage functional candidate satisfies

1

2
λm(P )‖u‖2

HqΩ
≤ S(u) ≤ 1

2
λM(P )‖u‖2

HqΩ
. (4.52)

Therefore, (S(u))
1
2 is equivalent to theHq

Ω-norm.

4.4.1 PDEs with In-domain Inputs/Outputs

Next, we discuss how conditions of Theorem 4.1.5 can be checked via integral inequalities.

Remark 4.4.1 From (4.52), it follows that (4.9) and (4.13) are satisfied, respectively, with

β1(·) = λm(P )
2

(·)2, β−1
1 (·) =

√
2

λm(P )
(·), and β2(·) = λM (P )

2
(·)2. �

Let η = γ2. For reachability analysis, we solve the following minimization problem:

Problem 1: (Reachability for system (4.1))

minimize
P (x)

η

subject to

(4.10), and ν2I < P (x), (4.53)

where, ν > 0 is a constant.

In this case, the reachability estimate (4.3) transforms to

‖u(T, ·)‖HqΩ ≤
γ

ν
‖d‖Hp

[0,T ),Ω
, ∀T > 0. (4.54)

Similarly, for inducedHp-to-Hq-norm, the following minimization problem is solved:
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Problem 2: (InducedHp-to-Hq norm for system (4.1))

minimize
P (x)

η

subject to

(4.12). (4.55)

When adopting the storage functional structure (4.51) for Dp-ISS in Hq
Ω, it is possible to

check the condition

∂tS(u) ≤ −
∫

Ω

(Dqu)′α(x)(Dqu) dx+

∫
Ω

σ(|Dpd(t, x)|) dx,

instead of (4.14), where α : Ω → Sn is a symmetric positive definite polynomial function

for all x ∈ Ω and σ is chosen as the sum of some even monomials of d. In this case, the

Dp-ISS estimate translates to

‖u(t, ·)‖HqΩ ≤
(
e−

λm(α)
λm(P )

t
(
‖u0‖2

HqΩ

)) 1
2

+

(
1

λm(α)
sup
τ∈[0,t)

( ∫
Ω

σ(|Dpd(τ, x)|) dx
)) 1

2

.

(4.56)

4.4.2 PDEs with Boundary Inputs and Boundary Outputs

In this subsection, we discuss a computational formulation of Corollary 4.2.3. To formulate

the problem in terms of integral inequalities with polynomial integrands, we assume that

the function σ in inequality (4.35) is polynomial, while the storage functional is given

by (4.51).

Substituting (4.25) in inequalities (4.30), (4.32), (4.33), and (4.35) respectively yields

I) ∂tS(u) ≤
(
Dα−1u(t, 1)

)′
B′h

(
Dβu(t, 0)

)
, (4.57)
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II) ∂tS(u) ≤ γ2
(
Dα−1u(t, 1)

)′
B′B

(
Dα−1u(t, 1)

)
, (4.58)

III) ∂tS(u) ≤ −h′
(
Dβu(t, 0)

)
h
(
Dβu(t, 0)

)
+γ2

(
Dα−1u(t, 1)

)′
B′B

(
Dα−1u(t, 1)

)
, (4.59)

IV) ∂tS(u) ≤ −
∫

Ω

(Dqu)′α(x)(Dqu) dx+ σ
(∣∣BDα−1u(t, 1)

∣∣) , (4.60)

where α : Ω → Sn(α+1) is a symmetric positive definite polynomial matrix function for

all x ∈ Ω. Let η = γ2. For reachability analysis, the following minimization problem is

solved:

Problem 3: (Reachability for system (4.25))

minimize
P (x)

η

subject to

(4.58), and ν2I < P (x) , (4.61)

where, ν > 0 is a constant.

Then, the reachability estimate (4.27) transforms to

‖u(T, ·)‖HqΩ ≤
γ

ν
‖w‖L2

[0,T )
, ∀T > 0. (4.62)

Analogously, we solve the following minimization problem for L2
[0,∞)-to-Hq-norm:

Problem 4: (Induced L2
[0,∞)-to-Hq norm for system (4.25))

minimize
P (x)

η,

subject to

(4.59). (4.63)
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Provided that the problem data are polynomial in the dependent variables, we can for-

mulate SOS programs as discussed in Chapter 3 to solve the inequalities discussed in this

section.

4.5 Numerical Examples

In this section, we illustrate the proposed results in this chapter using four numerical ex-

amples.

4.5.1 Heat Equation with Reaction Term

Consider the following PDE system


∂tu = ∂2

xu+ λ(x)u+ ε(x)d, ∀x ∈ [0, 1] and ∀t ≥ 0

y = u,

u(0, t) = u(1, t) = 0, t ≥ 0.

(4.64)

For d = 0, the system is exponentially stable for λ(x) = λ0 < π2 [116, p. 11]. For pas-

sivity analysis, let ε(x) = 1 and λ(x) = λ0. Applying condition (4.8) in Theorem 4.1.5,

certificates could be found that passivity property holds for λ0 < 0.2π2.

With respect to reachability analysis, let ε(x) = 100x(1 − x) and λ = 0. With this

choice of the function ε(x), the in-domain input d has its maximum amplification at x =

0.5. The polynomial P (x) is set to 1, so that the Lyapunov functional represents the L2
Ω-

norm of solutions. Table 4.1 provides the attained results. As expected, for larger values of

parameter λ, as the system approaches the instability bound, the reachable set is enlarged.

In the case of inducedL2-to-L2-norm, certificates were found forL2-to-L2-norm bound-

edness for λ(x) = λ0 ≤ 0.4π2. Table 4.2 presents the results from the numerical experi-
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Table 4.1: Reachability analysis results for Equation (4.64).

λ
π2 0 0.2 0.4 0.6 0.8
γ 5.76 6.79 8.62 12.46 29.71
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Figure 4.2: The spatially varying coefficients for Equation (4.69).
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Figure 4.3: ISS certificates for Equation (4.69) (with λ = 0.2π2).

ments. It can be deduced from the table that, from λ0 = 0.3π2 to λ0 = 0.4π2, the induced

L2-gain increases.

Take λ(x) = λc − 24x + 24x2 and ε(x) = 100x(1 − x). Figure 4.2 depicts the

spatially varying parameter λ(x) with different values of λc. As it can be observed, for

λc ∈ {10, 11, 12, 13}, the coefficients exceed the stability bound for constant λ; i.e.,

λ(x) = λ0 = π2. Table 4.3 summarizes the obtained results.

Finally, certificates for ISS are studied. The experiments were performed with con-

struction of polynomials P (x), α(x), and σ(u) to certify ISS property. Certificates for ISS
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Table 4.2: Induced L2-norm results for Equation (4.64) subject to constant coefficients.

λ
π2 0 0.2 0.3 0.35 0.39
γ2 0.0560 0.1876 0.5465 1.296 6.158

Total Time (s) 16.87 18.09 18.35 16.89 18.23

Table 4.3: Induced L2-norm results for Equation (4.64) subject to spatially varying coeffi-
cients.

λc 8 9 10 11 12 13
γ2 6.503 6.987 4.612 5.989 7.676 10.261

Total Time (s) 16.87 18.09 18.35 16.89 18.23 17.22

property were constructed for λ(x) = λ0 ≤ 0.5π2. Fig. 4.3 presents the results obtained

from numerical experiments for λ0 = 0.2π2.

4.5.2 Coupled Reaction-Diffusion PDEs

Consider the following system of coupled reaction-diffusion PDEs

Σ :


∂tu = ∂2

xu+ λu− v

∂tv = ∂2
xv + λv + u

, x ∈ [0, 1], t > 0 (4.65)

subject to u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0, where λ > 0. In the following,

we show that system (4.65) is exponentially stable in L2
Ω for λ < π2. We consider the

following energy functional in L2
Ω

E(u, v) =
1

2
‖(u, v)‖2

L2
Ω

=
1

2

∫ 1

0

(
u2 + v2

)
dx. (4.66)
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Table 4.4: Obtained bounds on induced L2
Ω-norm for Equation (4.68).

λ
π2 0 0.3 0.5 0.75 0.8
γ2 0.014 0.033 0.079 0.712 1.318

The time derivative of the above energy functional along the solutions of (4.65) is given by

∂tE(u, v) =

∫ 1

0

(
u
(
∂2
xu+ λu− v

)
+ v

(
∂2
xv + λv + u

))
dx

=

∫ 1

0

(
u∂2

xu+ λu2 + v∂2
xv + λv2

)
dx

= (u∂xu) |x=0,1 + (v∂xv) |x=0,1 +

∫ 1

0

(
− (∂xu)2 + λu2 − (∂xv)2 + λv2

)
dx

= −
∫ 1

0

(
(∂xu)2 + (∂xv)2) dx+ λ

∫ 1

0

(
u2 + v2

)
dx,

where in the last inequality the boundary conditions u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) =

0 is used. Applying the Poincaré inequality to the last equality above, we obtain

∂tE(u, v) ≤ −π2

∫ 1

0

(
u2 + v2

)
dx+ λ

∫ 1

0

(
u2 + v2

)
dx

= −2π2

(
1− λ

π2

)
E(u, v). (4.67)

That is, E(u, v) ≤ E(u0, v0)e−2π2(1− λ
π2 )t for λ < π2.

However, we can infer the stability properties of Σ by decomposing it into an intercon-

nection of two PDEs, i.e., Σ1 and Σ2 given by

Σi :


∂tui = ∂2

xui + λui

yi = ui

, i = 1, 2. (4.68)

where u1 = u and u2 = v with the interconnection as in Figure 4.1. Remark that both Σ1

and Σ2 are ZSD in L2
Ω, since yi = 0 implies ui = 0, for i = 1, 2. From Table 4.4, it can

be inferred that we could find certificates that equation (4.64) with ε(x) = 0 has induced

L2
Ω-norm γ < 1 for λ ≤ 0.75π2. Since both Σ1 and Σ2 are in the form of (4.64) with
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Table 4.5: Results pertained to induced L2-to-L2-norm for PDE (4.69).
√

2β
π

0 0.1 0.12 0.15 0.18 0.2
γ2 0.195 0.306 0.351 0.452 0.666 1.062

ε(x) = 0, we infer that γ1 < 1 and γ2 < 1 for λ ≤ 0.75π2. Thus, γ1γ2 < 0.507 < 1

for λ ≤ 0.75π2. Therefore, conditions of Theorem 4.3.1 are satisfied. Thus, system Σ,

which is the interconnection of Σ1 and Σ2 is asymptotically stable for λ ≤ 0.75π2. This is

consistent with the results from energy stability analysis, i.e., λ < π2.

4.5.3 Burgers’ Equation with Nonlinear Forcing [116, 62]

Consider the following PDE


∂tu = 1

R
∂2
xu− δu∂xu+ βu2 + d,

u(t, 0) = 0, u(t, 1) = w(t), (t, x) ∈ R≥0 × [0, 1]

(4.69)

subject to d(t, 0) = d(t, 1) = 0 for all t ≥ 0, where R, δ, β are constants.

4.5.3.1 In-domain Analysis (w ≡ 0, R = 1 and δ = 1)

Let y(t, x) = u(t, x), (t, x) ∈ R≥0 × [0, 1]. The system without inputs (d ≡ 0, w ≡ 0)

is exponentially stable for β < π√
2

[116, p. 20]. Using condition (4.8) in Theorem 4.1.5,

certificates were found for passivity just for β = 0. For the induced L2-to-L2-norm, Table

4.5 provides the numerical details of the numerical experiments. From numerical experi-

ments, certificates were constructed for L2-to-L2-norm boundedness of system (4.69) for

β ≤ 0.2 π√
2
.

At this point, let β = 0. Similar to nonlinear ODEs, we expect the nonlinear PDE to

have a nonlinear induced L2-to-L2 gain function [39]. Figure 4.4 illustrates the obtained

(upper bound) gain functions from numerical experiments. There are three noteworthy

regions in the gain curve. For small values of the input L2-norm, the nonlinear gain curve
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Figure 4.4: The L2-to-L2 gain curve.

is relatively constant until a threshold is reached. This section corresponds only to the

linear part of the PDE. Then, the gain nonlinearly increases until it reaches an upper bound

which is approximately the bound obtained using only energy as the storage functional.

In addition, for different values of the parameter R, we computed the induced L2-to-

L2 norms using the energy functional P (x) = I and using storage functional (4.51) of

degree 8. The results are illustrated in Figure 4.5. As it can be observed, the bounds

obtained using the energy method remain constant for all values of input norm for fixed

R. Moreover, they upper-bound the induced norms computed by storage functional (4.51).

This implies that the energy functional is not suitable for capturing the nonlinear dynamics

of the PDE.

4.5.3.2 Boundary Analysis (d ≡ 0)

Assume y(t) = ∂xu(t, 0), t > 0. Let δ = β = 0. First, we study the upper bounds on γ as

in (4.28). It is assumed u0(x) ≡ 0, ∀x ∈ [0, 1] . Figure 4.6 illustrates the results obtained

for R ∈ [0.01, 10]. For each R, Problem 4 is solved and the minimum γ is shown in the

figure. As it can be inferred from the figure, as R increases and therefore the diffusion term
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attenuates, the obtained bounds on γ increase.

At this point, we study the ISS property in L2
Ω of system (4.69) with δ = 1 and R =

1. The ISS bound on β for which ISS certificates could be found was β = (0.43) π√
2
.

Figure 4.7 depicts the constructed certificates P (x) and α(x) for β = (0.43) π√
2
. Also,

certificate σ(w) is calculated as

σ(w) = 0.9506w4 + 7.1271w2.

4.5.4 Example IV: Kuramoto-Sivashinsky Equation [54, 34]

Consider the following PDE


∂tu = −∂4

xu− λ∂2
xu− u∂xu+ d,

y = u, (t, x) ∈ R≥0 × [0, 1],

u(t, 0) = u(t, 1) = ∂xu(t, 0) = ∂xu(t, 1) = 0.

(4.70)

It was demonstrated in [67] that for constant λ the system is exponentially stable in H2
Ω-

norm (thus, from Sobolev Embedings, stable inH1
Ω-norm as well) for λ ≤ 4π2.

First, we consider computing upper bounds on the induced L2-to-H1-norm of the sys-

tem. The results are presented in Table 4.6. Figure 4.8 shows the elements of the 2 × 2

matrix P (x) in the storage functional and its eigenvalues for λ = (0.9)4π2.

Finally, let λ(x) = λ0− 16π2x(1−x). Then, in (4.70), the spatially varying coefficient

λ(x) crosses the stability bound λ = 4π2 (at least) at subsets of the domain for λ0 ≥ 4π2.

We seek upper bounds on λ0 such that certificates for D1-ISS in H1
Ω can be found. For

constant λ, certificates could only be found up to λ = (0.62)4π2. However, for the spatially

varying λ, we could construct certificates for D1-ISS inH1
Ω for λ0 = (1.83)4π2. Figure 4.9
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Figure 4.7: The ISS certificates P (x) (top) and α(x) (bottom).

illustrates the eigenvalues of certificates P (x) and α(x) for the case λ0 = (1.83)4π2 and

σ(d, ∂xd) was calculated as

σ(d, ∂xd) = 3.2314d2 + 4.0093(∂xd)2.
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Table 4.6: Results pertained to induced L2-to-H1-norm for PDE (4.70).

λ
4π2 0.3 0.5 0.55 0.6 0.7 0.9
γ2 0.003 0.048 0.517 1.211 3.229 9.840
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Figure 4.8: The entries of P (x) (top) and the eigenvalues of P (x) (bottom) for the case
λ = (0.9)4π2.

4.6 Further Discussions: Finite-Dimensional Inputs and

Outputs

In this section, we elaborate on some further remarks. In particular, we delve further into

the case when the PDE system is subject to finite-dimensional inputs and outputs.
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Ω certificates for PDE (4.70) with λ0 = (1.8)4π2.

The case of finite dimensional inputs and outputs defined at the boundaries was dis-

cussed in Section 4.2. Regarding inputs and outputs of the form

d̄(t, x) = b(x)d(t), (4.71)

y(t) =

∫
Ω

c(x)u(t, x) dx, (4.72)

we describe how the proposed formulation in this chapter can address these types of inputs

and outputs as follows.
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With respect to d̄(t, x), note that

‖d̄(t, x)‖Hq
[0,T ),Ω

= ‖b(x)d(t)‖Hq
[0,T ),Ω

=

(∫ T

0

〈b(x)d(t), b(x)d(t)〉HqΩ dt

) 1
2

=

(∫ T

0

d′(t)d(t)‖b(x)‖2
HqΩ

dt

) 1
2

= ‖b(x)‖HqΩ‖d(t)‖L2
[0,T )

. (4.73)

Thus, for d̄(t, x), we can obtain bounds on itsHq norm as the ones presented in Section 4.1,

as long as b ∈ Hq
Ω and d ∈ L2

[0,T ).

Regarding y(t), consider the class of PDE systems described by


∂tu(t, x) = F (x,Dαuu(t, x)) +G(x)d(t),

y(t) =
∫ 1

0
h(x,Dβu(t, x)) dx, (t, x) ∈ R≥0 × Ω,

B
[
Dαu−1u(t,1)

Dαu−1u(t,0)

]
= 0,

(4.74)

and initial conditions u(0, x) = u0(x). The dependent variables u : R≥0 × Ω → Rnu ,

d : R≥0 → Rnd , and y : R≥0 → Rny represent states, inputs, and outputs, respectively,

G(x) = diag(g1(x), g2(x), . . . , gnd(x)), β < αu, B is a matrix of appropriate dimension

defining the boundary conditions, and h is a nonlinear function. In order to apply the

methods proposed in Chapter 3, let us define a new dependent variable ȳ(t, x) as

ȳ(t, x) =

∫ x

0

h(η,Dβu(t, η)) dη,

with the boundary values

ȳ(t, 0) = 0, ȳ(t, 1) = y(t), (4.75)

and the differential equation

∂xȳ(t, x)− h(x,Dβu(t, x)) = 0. (4.76)
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We can then include the differential equation (4.76) in system (4.74) as an equality con-

straint relating u and ȳ. In order to illustrate how we incorporate equality constraints in the

proposed formulation, i.e., in the integral constraints, we provide the following steps. Let

M =

∫
Ω

(Dαv(t, x))′M(x)Dαv(t, x) dx

−
((

Dα−1v(t, 1)
)′
M1

(
Dα−1v(t, 1)

)
−
(
Dα−1v(t, 0)

)′
M0

(
Dα−1v(t, 0)

))
(4.77)

and

VS(B) =
{
v | B

[
Dα−1v(t,1)

Dα−1v(t,0)

]
= 0
}
. (4.78)

We are interested in solving the following problem:

Verify M≥ 0

v ∈ VS(B), p
(
x,Dβv(t, x)

)
= 0. (4.79)

Since p
(
x,Dβv(t, x)

)
= 0 holds for all x ∈ Ω, we have N(x)p

(
x,Dβv(t, x)

)
= 0, ∀x ∈

Ω for any N(x) : Ω→ RMp . Hence,

M̄ =M, ∀v ∈ VS(B) and ∀v ∈
{
v | p

(
x,Dβv(t, x)

)
= 0
}
,

where

M̄ =

∫
Ω

(
(Dαv(t, x))′M(x)Dαv(t, x)+N(x)p

(
x,Dβv(t, x)

))
dx

−
((

Dα−1v(t, 1)
)′
M1

(
Dα−1v(t, 1)

)
−
(
Dα−1v(t, 0)

)′
M0

(
Dα−1v(t, 0)

))
. (4.80)

Thus, we can convert the constrained feasibility problem (4.79) into the following uncon-
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strained feasibility problem

Verify M̄ ≥ 0

v ∈ VS(B), (4.81)

which fits the framework discussed in Chapter 3.

The input-output properties of interest are then studied by Corollary 4.2.3 for finite

dimensional inputs and outputs defined at the boundary.

4.7 Conclusions

In this chapter, we proposed a methodology for input-state/output analysis of PDEs using

dissipation inequalities and we provided a systematic computational method for solving the

dissipation inequalities in the case of polynomial data. Based on these tools, we studied

passivity, reachability, induced norms and ISS for PDEs with in-domain inputs and outputs

and PDEs with boundary inputs and outputs. The dissipation inequalities allowed us to

establish properties of the interconnected PDE-PDE and PDE-ODE systems. We illustrated

the proposed method by several examples of linear and nonlinear PDE systems.

In the next chapter, we look into another analysis problem of PDEs, i.e., safety verifi-

cation of PDEs. We also demonstrate that the safety verification method can be used for

bounding output functionals of PDEs.
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Chapter 5

Barrier Functionals for Safety

Verification of PDEs

In the previous chapter, we discussed methods for input-state/output analysis of PDEs.

Apart from input-output analysis, in many safety-critical applications in engineering, we

are concerned with the so called safety verification problem, i.e., given a set of initial condi-

tions, checking whether all of the solutions of a given PDE do not violate a set of constraints

characterized by an unsafe set, especially in bounded time intervals. Moreover, in many

cases, we are interested in determining bounds on an output functional of the solutions of

the PDE, rather than the PDE solutions. In both of these problems, solving the PDE directly

for all initial conditions in a given set of initial conditions is overly computationally costly.

Also, numerical methods often do not provide certificates.

In this chapter, we propose a method for safety verification of PDEs based on the con-

struction of a functional of the states of the PDE that we refer to as the Barrier Functional.

The method does not require solving the PDEs and, parallels the storage functionals or

Lyapunov functionals for, respectively, input-output analysis or stability analysis of PDEs.

We demonstrate that if such barrier functional exists, satisfying a set of inequalities, then

the PDE solutions are safe. When the barrier functional is an integral functional, these
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inequalities become integral inequalities, which can be checked via convex optimization in

the case of polynomial data.

Furthermore, we show how the output functional estimation problem can be reformu-

lated as a safety verification problem. Then, we can find upper-bounds on the output func-

tionals by solving a polynomial optimization problem.

Two examples illustrate the proposed method.

The results associated with bounding output functionals of PDEs, were presented in the

2015 American Control Conference [3]. A journal version including the discussions on

safety verification is currently under preperation [5].

5.1 Safety Verification for PDE Systems

In the current section, we define the safety verification problem and present a method based

on an extension of barrier certificates to PDEs. We then illustrate the proposed method by

an analytical example.

5.1.1 Problem Formulation

We study a class of forward-in-time PDE systems. Let U be a Hilbert space. Consider the

following differential equation



∂tu(t, x) = Fu(t, x), x ∈ Ω ⊂ Rn, t ∈ [0, T ],

y(t) = H u(t, x)

u(0, x) = u0(x) ∈ U0 ⊂ Dom(F )

u ∈ Ub

(5.1)

where Ub is a subspace of U , the state-space of system (5.1), defined by the boundary

conditions, H : U → R and Dom(H ) ⊇ U , the state-space of system (5.1).
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We call the set

Yu :=
{
u ∈ U |H u ≤ 0

}
,

the unsafe set.

As an example of system (5.1), consider the following system, x ∈ [0, 1], t ∈ [0, T ],



∂tu(t, x) = ∂2
xu(t, x)− u(t, x)∂xu(t, x),

y(t) = 5−
∫

Ω
u2(t, θ) dθ − ∂xu(t, 1)

U0 = {u0 ∈ L2 | ‖u0‖L2 ≤ 1; ∂xu0 ≤ 0}

Ub =


u ∈ H1

Ω |

 1 0 0 0

0 0 1 0





u(t, 0)

∂xu(t, 0)

u(t, 1)

∂xu(t, 1)


= 0


.

Then, by definition, we have

Yu =

{
u ∈ Ub | 5 ≤

∫
Ω

u2(t, θ) dθ + ∂xu(t, 1)

}
.

In this section, we present conditions to obtain certificates that trajectories starting in

the set U0 are safe with respect to the set Yu. In other words, we present a method for safety

verification of a PDE system.

Consider the following properties of trajectories related to an initial set U0 and an unsafe

set Yu.

Definition 5.1.1 (Safety Verification at Time T ) Let u ∈ U . For a set U0 ⊆ U , an unsafe

set Yu, satisfying U0 ∩ Yu = ∅, and a positive scalar T , system (5.1) is safe with respect to

Yu at time T , if, for all u(0, x) ∈ U0, the solutions u(t, x) of system (5.1) satisfy y(T ) /∈ Yu.
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Definition 5.1.2 (Safety Verification) System (5.1) is safe with respect to Yu, if it is safe

with respect to Yu in the sense of Definition 5.1.1 for all T > 0.

We are interested in solving the following problem:

Problem 5.1.3 Given sets Yu, U0 and T > 0, verify that system (5.1) is safe with respect

to Yu at time T .

To this end, we define a functional of the states of the PDE and time

B(t, u) = B(t)u, (5.2)

where B(t) : Dom(B) → R. We refer to this functional as the barrier functional. Note

that this extension of barrier certificates [91] enables us to address sets that are defined on

infinite-dimensional spaces. In the subsequent section, we show that the barrier functional

provides the means to characterize a barrier between the set of initial conditions and the

unsafe set.

5.1.2 Safety Verification Using Barrier Functionals

In the next theorem, we provide a solution to Problem 5.1.3 for PDE systems based on the

construction of barrier functionals satisfying a set of inequalities.

Theorem 5.1.4 (Safety Verification for Forward PDE Systems) Consider the PDE sys-

tem described by (5.1). Let u ∈ U . Given a set of initial conditions U0 ⊆ U , an unsafe

set Yu, such that U0 ∩ Yu = ∅, and a constant T > 0, if there exists a barrier functional

B(t, u(t, x)) ∈ C1[t] as in (5.2), such that the following inequalities hold

B(T, u(T, x))−B(0, u0(x)) > 0, ∀u(T, x) ∈ Yu, ∀u0 ∈ U0, (5.3a)

dB(t, u(t, x))

dt
≤ 0, ∀t ∈ [0, T ], ∀u ∈ U , (5.3b)
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t0

‖u‖HqΩ Yu

T

U0

B(t, u(t, x))−B(0, u0(x)) = 0

Figure 5.1: Illustration of a barrier functional for a PDE system: any solution u(t, x) with
u(0, x) ∈ U0 (depicted by the shaded area) satisfies u(T, x) /∈ Yu. The system avoids Yu at
time t = T but not for ∀t > 0.

along the solutions of (5.1), then the solutions of (5.1) are safe with respect to Yu at time

T (cf. Definition 5.1.1).

Proof: The proof is by contradiction. Assume there exists a solution of (5.1) such that, at

time T , u(T, x) ∈ Yu and inequality (5.3a) holds. From (5.3b), it follows that

dB(t, u(t, x))

dt
≤ 0, (5.4)

for all t ∈ [0, T ], and u ∈ U . Integrating both sides of (5.4) with respect to t from 0 to T

yields ∫ T

0

dB(t, u)

dt
dt = B(T, u(T, x))−B(0, u(0, x)) ≤ 0.

for all u ∈ U . This contradicts (5.3a). �

The level sets of B(t, u(t, x)) − B(0, u0(x)) represent barrier surfaces in the U space

separating U0 and Yu such that no solution of (5.1) starting from U0 is in Yu at time T

(hence, the term “barrier functional”). This property is illustrated in Figure 5.1.
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Theorem 5.1.4 is concerned with conditions for safety verification with respect to the

unsafe set Yu at a particular time T > 0. The next corollary follows from Theorem 5.1.4

and gives conditions for safety verification with respect to an unsafe set Yu for all time

t > 0. In this case, the barrier functional can be independent of t.

Corollary 5.1.5 Consider the PDE system described by (5.1). Assume u ∈ U . Given an

unsafe set Yu ⊂ U , such that U0 ∩Yu = ∅, if there exists a barrier functional B(u(t, x)) as

in (5.2) such that

B(u(t, x))−B(u0(x)) > 0, ∀u ∈ Yu, ∀u0 ∈ U0, (5.5a)

dB(u(t, x))

dt
≤ 0, ∀u ∈ U , (5.5b)

along the solutions of (5.1), then the solutions of PDE (5.1) are safe with respect to Yu (cf.

Definition 5.1.2).

Proof: The proof follows the same lines as the proof of Theorem 5.1.4. Assume that there

exists a solution u(t, x) to (5.1) such that, for some t > 0, we have u(t, x) ∈ Yu. Then, from

(5.5a), it follows that B(u(t, x))−B(u0(x)) > 0. On the other hand, integrating inequality

(5.5b) from 0 to t implies that B(u(t, x))−B(u0(x)) ≤ 0, which is a contradiction. Thus,

since t is arbitrary, the solutions to (5.1) avoid Yu for all time. �

We conclude this section by illustrating Corollary 5.1.5 with an analytical example that

uses a barrier functional to bound a performance index.

Example 5.1.6 (Performance Bounds) Consider the heat equation defined over a domain

Ω ⊂ R2 with smooth boundary

∂tu = ∆u, x ∈ Ω, t > 0, (5.6)
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subject to u|∂Ω = 0. Then, U = {u ∈ H2
Ω | u|∂Ω = 0}. The set of initial conditions

u(0, x) ∈ U0 =

{
u0 ∈ U |

∫
Ω

|∇u0|2 dΩ ≤ 1

}
. (5.7)

Consider the output

y(t) = γ2 −
∫

Ω

u2 dΩ,

where γ ≥ 0. Then, the unsafe set is described asYu =
{
u ∈ U | y(t) = γ2 −

∫
Ω
u2 dΩ < 0

}
.

We are interested in finding the minimum γ such that no solution of (5.6) enters Yu for all

u(0, x) ∈ U0.

We consider the barrier functional (5.2) with

B : H1
Ω → R≥0

u 7→
∫

Ω
(∇u)′∇u dΩ,

that is, B(u(t, x)) =
∫

Ω
(∇u)′∇u dΩ. We first check inequality (5.5b) along the solutions

of (5.6):

dB(u(t, x))

dt
=

∫
Ω

2∇u∂t (∇u) dΩ = 2 (∇u∂tu) |∂Ω − 2

∫
Ω

∆u∂tu dΩ

= −2

∫
Ω

(∆u)2 dΩ ≤ 0,

where, in the second equality above, integration by parts and, in the third equality, the

boundary conditions are used. Thus, inequality (5.5b) is satisfied. At this point, let us

check inequality (5.5a). We have

B(u(t, x))−B(u0) =

∫
Ω

|∇u|2 dΩ−
∫

Ω

|∇u0|2 dΩ ≥
∫

Ω

|∇u|2 dΩ− 1

≥ C(Ω)

∫
Ω

u2 dΩ− 1,

where u0 ∈ U0 as in (5.7) is applied to obtain the first inequality and the Poincaré inequal-
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ity is used in the second inequality. Then, it follows that whenever γ2 > 1
C(Ω)

, we have

B(u(t, x))−B(u0) > 0, and thus, from Theorem 5.1.4, system (5.6) avoids Yu. Therefore,

it holds that y /∈ Yu, which implies y(t) = γ2
min −

∫
Ω
u2 dΩ ≥ 0, i.e., γ2

min ≥
∫

Ω
u2 dΩ,

where γ2
min = 1

C(Ω)
. For example, whenever Ω = {(x, y) ∈ R2 | |x + y| ≤ 1}, we obtain

γ2 = 2
π2 .

5.2 Bounding Output Functionals of PDEs

In this section, we discuss an important application of the safety verification method, i.e.,

bounding functional outputs of PDEs. We present a motivating example that is referred to

throughout this section.

5.2.1 Motivating Example

The heat distribution over a heated rod is described by

∂tu = k∂2
xu+ f(t, x, u), x ∈ Ω, t > 0 (5.8)

where k > 0 is the thermal conductivity, and f(t, x, u) is the forcing, representing either a

heat sink or a heat source. The initial heat distribution is u(0, x) = u0(x). We are interested

in estimating bounds on the heat flux emanating from the boundary x = 0

y(t) = k∂xu(t, 0), t > 0. (5.9)

The available approaches for finding bounds on (5.9) rely on methods for approximating

the solution to (5.8) and then computing (5.9) [88, 73, 89]. In addition, some existing

methods [14, 88, 138] require convexity of the output functional y(t) in the dependent

variables.
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5.2.2 Problem Formulation

Consider the following particular case of PDE systems (5.1)

∂tu(t, x) = F (t, x,Dαu(t, x)), x ∈ Ω, t > 0 (5.10)

y(t) = H̃ u, t ≥ 0 (5.11)

subject to u(0, x) = u0(x) and boundary conditions given by

Q

Dα−1u(t, 1)

Dα−1u(t, 0)

 = 0, (5.12)

with B being a matrix of appropriate dimension and F being a nonlinear function. Define

the following set with the Sobolev norm as the restriction of Hilbert space to the space of

functions u satisfying boundary conditions (5.12)

Ub =

u ∈ Hα
Ω | Q

 Dα−1u(t, 1)

Dα−1u(t, 0)

 = 0

 . (5.13)

We assume the output functional (5.11) is defined by the operator H̃ which is of the form

H̃ u = H1

(
t,Dβu(t, x)

)
+

∫ t

0

H2

(
τ,Dβu(τ, x)

)
dτ, x ∈ Ω, t > 0, (5.14)

wherein, 0 ≤ β ≤ α. {Hi}i=1,2 are given by

Hi(t,D
βu) = h1(t, x,Dβu(t, x)) +

∫
Ω̃

h2(t, θ,Dβu(t, θ)) dθ, x ∈ Ω, t > 0, i = 1, 2

(5.15)

with Ω̃ ⊆ Ω and hi, i = 1, 2 being nonlinear functions that map into R. In this study, we

discuss the cases where either H1 = 0 or H2 = 0.
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Remark 5.2.1 The functional given by (5.11), (5.14), and (5.15) represents an output func-

tional either evaluated

A. at a single point inside the domain (h2 = 0),

B. over a subset of the domain (h1 = 0 and Ω̃ ⊂ Ω)

C. over the whole domain (h1 = 0 and Ω̃ = Ω).

We transform output functionals A-B to the output functional structure C, which we refer

as full integral form in the sequel. This structure is consistent with the method for solving

integral inequalities outlined in Chapter 3. The transformation methods for converting

structure A to C and structure B to C are discussed in Appendix B.

The problem we are interested in solving can be stated as follows.

Problem 5.2.2 Given PDE (5.10) with initial condition u0 ∈ U0 and boundary condi-

tions (5.12), and a scalar T ≥ 0, compute γ ∈ R such that y(T ) ≤ γ, where y is given

in (5.11) and (5.14).

We are interested in finding barrier certificates to check whether the output functional

y as in (5.11) satisfies y(T ) ≤ γ for some γ > 0 and T > 0, e.g., y(T ) = k∂xu(T, 0) in the

motivating example of Section 5.2.1. Let Yu =
{
u ∈ Hα

Ω | y(T ) = H̃ u(T ) > γ
}

. Note

that the set Yu defines a subset of function spaces. At this point, we observe that checking

whether y(T ) ≤ γ can be performed via safety verification. In this respect, the key step is

to find certificates that there is no solution u(t, x) to (5.10) starting at u0(x) ∈ U0 such that

u(T, x) ∈ Yu. The next theorem asserts that barrier functionals can be used as certificates

for upper-bounding output functionals.

Corollary 5.2.3 Consider the PDE system described by (5.10) subject to boundary condi-

tions (5.12) and initial condition u0(x) ∈ U0 ⊂ Ub, where Ub is defined in (5.13). Assume
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u ∈ U ⊆ Ub. Let

Yu =

{
u ∈ U | y(T ) =

∫ 1

0

h(T, x,Dβu(T, x)) dx > γ

}
, (5.16)

define the unsafe set. If there exists a barrier functional B(t, u) ∈ C1[t], such that (5.3)

hold, then it follows that there is no solution u(t, x) of (5.10) such that u(0, x) = u0(x) ∈

U0 and u(T, x) ∈ Yu for T > 0. In other words, it holds that y(T ) ≤ γ.

From Corollary 5.2.3, we can compute upper bounds on y(T ) by solving the minimiza-

tion problem below

minimize
B(t,u)

γ

subject to

B(T, u(T, x))−B(0, u0) > 0, for
∫ 1

0

(
h(T, x,Dβu(T, x))− γ

)
dx > 0, (5.17)

−dB
dt
≥ 0, for t(T − t) > 0. (5.18)

where u(T, x), u(t, x) ∈ Ub.

Thus far, output functionals of type (5.14) with H2 = 0 were considered. In some

applications, one might be interested in output functionals of type (5.14) with H1 = 0. For

example, referring to the motivating example in Section 5.2.1, we might be interested in

the following quantity which represents the average temperature of the heated rod for time

T > 0

y(T ) =

∫ T

0

∫
Ω

u(t, x) dx dt.

In other words, bounds on inequalities of the following type are sought

y(T ) =

∫ T

0

∫ 1

0

h(t, x,Dβu(t, x)) dx dt ≤ γ∗. (5.19)

Obtaining bounds for this type of output functionals can also be addressed as delineated in
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the next corollary.

Corollary 5.2.4 Consider the PDE system described by (5.10) with boundary conditions (5.12)

and initial condition u0 ∈ U0 ⊂ Ub, where Ub is defined in (5.13). Assume u ∈ U ⊆ Ub. Let

Ỹu =

{
u ∈ U |

∫ 1

0

h(t, x,Dβu(t, x)) dx > ∂tγ(t)

}
, (5.20)

with γ(t) : R≥0 → R, 0 ≤ β ≤ α as in (5.10), define the unsafe set. If there exists a barrier

functional B(t, u) ∈ C1[t], such that

B(t,Dβu(t, x)) − B(0, Dβu0(x)) > 0, ∀u ∈ Ỹu, ∀u0 ∈ U0, ∀t ∈ (0, T ), (5.21)

and (5.3b) are satisfied, then it holds that y(T ) ≤ γ? with y(T ) given by (5.19) and γ? =

γ(T )− γ(0).

Proof: This follows from Corollary 5.2.3. If there exists a function B(t, u) satisfy-

ing (5.21) and (5.3b), then, from Corollary 5.2.3, we conclude that there is no solution

u(t, x) of (5.10) satisfying u(t, x) ∈ Ỹu for t ∈ (0, T ). That is, it holds that

∫ 1

0

h(t, x,Dβu(t, x)) dx ≤ ∂tγ(t), ∀t ∈ (0, T ). (5.22)

Integrating both sides of (5.22) from 0 to T yields

y(T ) =

∫ T

0

∫ 1

0

h(t, x,Dβu(t, x)) dx dt ≤
∫ T

0

∂tγ(t) dt = γ(T )− γ(0). (5.23)

This completes the proof. �

We can compute bounds on γ∗ = γ(T )− γ(0) via an optimization problem as follows.
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If there exists a solution γ∗ = γ(T )− γ(0) to the minimization problem

minimize
B(t,u)

(γ(T )− γ(0))

subject to

B(t, u)−B(0, u0) > 0, for
∫ 1

0

(
h(t, x,Dβu(t, x))− ∂tγ(t)

)
dx > 0 and t(T − t) > 0,

−dB
dt
≥ 0, for t(T − t) > 0. (5.24)

with u(t, x) ∈ Ub, then the following inequality holds

∫ T

0

∫ 1

0

h(t, x,Dβu(t, x)) dx dt ≤ γ∗= γ(T )− γ(0). (5.25)

Remark 5.2.5 Note that inequality (5.21) in Corollary 5.2.4 requires the system to be safe

for all t ∈ (0, T ). In this sense, Corollary 5.2.4 is more conservative than Corollary 5.2.3.

The resulting barrier functional B may not be a barrier for the set

Ỹu =

{
u ∈ Ub |

∫ T

0

∫ 1

0

g(t, x,Dβu(t, x)) dx dt ≤ γ∗
}
.

However, the set described in (5.20) can be used to compute the bound as in (5.19).

5.3 Construction of Barriers Functionals

In this section, we study a specific class of barrier functionals. For the studied class and for

particular sets U0, and Yu, the inequalities (5.3) and (5.21) become integral inequalities. For

the case of polynomial data, the verification of the inequalities can be cast as constraints of

an SDP based on the method discussed in Chapter 3.

In the previous sections, the barrier functionals were only assumed to be continuously

differentiable with respect to time. In this section, we impose the following structure for
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the barrier functionals

B(t, u) =

∫
Ω

ηd(Dαu(t, θ))′ B̄(t, θ) ηd(Dαu(t, θ)) dθ (5.26)

where Ω = [0, 1], B̄ : R≥0×Ω→ Rσ(n,d)×σ(n,d), B̄(t, x) ∈ C1[t],∀x ∈ Ω, and the following

quadratic-like structures for the unsafe and the initial sets

Yu =

{
u ∈ U |

∫
Ω

ηd(Dαu(t, θ))′ Y (θ) ηd(Dαu(t, θ)) dθ ≥ 0

}
, (5.27a)

and the set of initial conditions

U0 =

{
u0 ∈ U |

∫
Ω

ηd(Dαu(t, θ))′ U0(θ) ηd(Dαu(t, θ)) dθ ≥ 0

}
. (5.27b)

where, Y : R≥0 × Ω→ Rσ(n,d)×σ(n,d) and U0 : R≥0 × Ω→ Rσ(n,d)×σ(n,d).

The following proposition applies Lemma 3.2.1 to formulate integral inequalities to

verify the conditions of Theorem 5.1.4 considering the barrier functional (5.26). In this

case, the constraint set S as defined in (3.15) is given by S = Yu∪U0, with the sets defined

in (5.27), that is

s1(x,Dαu) = ηd(Dαu)′Y (x)ηd(Dαu),

s2(x,Dαu) = ηd(Dαu)′U0(x)ηd(Dαu). (5.28)

Proposition 5.3.1 If there exist B̄ : [0, T ] × Ω → Rσ(n,d)×σ(n,d) or B(t, u) as in (5.26),

m : T × Ω→ R2 and n ∈ R2
≥0 such that the inequalities

B(T, u(T, x))−B(0, u0)−n′v(T, 1)+

∫
Ω

m′(T, θ) (∂θv(T, θ)− s(x,Dαu(T, θ))) dθ > 0,

(5.29a)

with s(x,Dαu) = [ s1(x,Dαu) s2(x,Dαu) ]′ defined by (5.28) and v(t, x) = [ v1(t,x) v2(t,x) ]′ as
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defined by (3.16), and

∫
Ω

(
ηd(Dαu)′∂tB̄(t, θ)ηd(Dαu) + 2ηd(Dαu)′B̄(t, θ)∇ηd(Dαu)′∂t(D

αu)

)
dθ ≤ 0,

(5.29b)

∀t ∈ [0, T ], ∀u ∈ U , then (5.3) holds and the PDE is Yu-safe at time T .

The numerical results presented in the next section consider the problem data to be poly-

nomial, i.e., the functions B̄,m, Y , U0 appearing in the inequalities of Proposition 5.3.1 are

polynomials on variables t and x, and the operator F in (5.1) may be nonlinear and defined

by a polynomial on u and its spatial derivatives with coefficients that are polynomials on

the spatial variables.

5.4 Examples

We now illustrate the proposed results with two numerical examples. The first example

is associated with tuning a parameter such that the solutions to a (nonlinear) diffusion-

reaction-convection PDE are safe. The second example is concerned with bounding two

output functionals of a diffusion-reaction PDE.

5.4.1 Safety Verification of the Burgers’ Equation with Reaction

Consider

∂tu = ∂2
xu+ λu− 2u∂xu, u(t, 0) = u(t, 1) = 0, (5.30)

where λ > 0, x ∈ [0, 1] and t > 0. Due to the presence of a nonlinear convection term,

the solutions with λ ≥ π2 (otherwise unstable) may converge to a different stationary

solution. This stems from the fact that the convection term transfers low wave number

components of the solutions to the high wave number ones for which the diffusion term has

a stabilizing effect in a similar fashion to the effects of diffusion and anti-diffusion terms in
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the Kuramoto-Sivashinsky equation [78]. Figure 5.2 depicts a solution to PDE (5.30) with

λ > π2.

We are interested in computing the maximum value for parameter λ, such that the

solutions starting in

U0 =

{
u0 |

∫ 1

0

(
u2

0 + (∂θu0)2
)
dθ ≤ 1

}
, (5.31)

which implies ‖u0‖H1
[0,1]
≤ 1, do not enter the setYu =

{
u |
∫ 1

0
(u2 + (∂θu)2) dθ ≥ (6)2

}
,

i.e., ‖u‖H1
[0,1]
≥ 6 for all t > 0. To this end, we consider the following barrier functional

structure

B(t, u(t, x)) =

∫ 1

0

[
u(t,θ)
∂θu(t,θ)

]′
M(θ)

[
u(t,θ)
∂θu(t,θ)

]
dθ, (5.32)

where M(θ) ∈ R2×2. Applying Corollary 5.1.5 and performing a line search for λ, the

maximum parameter λ, for which the solutions avoid Yu, is found to be λ = 1.198π2, for

which the barrier functional (5.32) was constructed with a degree-16 M(θ), in less than 16

seconds, as given below

M(θ) =

M11(θ) M12(x)

M12(θ) M22(θ)

 ,

104M11(θ) =− 12.96θ16 + 27.92θ15 − 55.38θ14 − 160.6θ13 − 222.4θ12 + 180.8θ11

+ 199.1θ10 + 332.9θ9 − 343.5θ8 − 454.9θ7 − 390.1θ6 + 329.9θ5

+ 666.7θ4 − 83.37θ3 − 663.4θ2 + 418.7θ − 74.97,

104M12(θ) =1.39θ16 − 26.03θ15 + 10.76θ14 + 22.53θ13 − 14.63θ12 − 22.81θ11

+ 52.28θ10 − 67.56θ9 − 69.45θ8 − 87.54θ7 + 79.37θ6 + 262.8θ5

− 32.63θ4 − 447.1θ3 + 417.7θ2 − 157.6θ + 23.88,
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Figure 5.2: The solution to PDE (5.30) for λ = 1.2π2.

104M22(θ) =− 1.607θ16 − 26.85θ14 + 47.17θ13 + 38.69θ12 − 77.1θ11 − 34.36θ10

+ 66.47θ9 + 13.36θ8 − 34.57θ7 − 1.477θ6 + 17.13θ5

− 9.405θ4 + 2.768θ3.

This is consistent with the numerical experiments shown in Figure 5.3, where the H1
Ω-

norm of the solution to PDE (5.30) with λ = 1.2π2 was computed for four different initial

conditions u0(x) ∈ U0 as in (5.31).

5.4.2 Bounding the Heat Flux of a Heated Rod

In this example, we apply the safety verification method to find upper bounds on the heat

equation. Consider

∂tu = ∂2
xu+ λu, x ∈ [0, 1], t > 0, (5.33)

for all u(t, 0) = u(t, 1) = 0 and the initial condition u0(x) = πx(1− x). For comparison,

the exact solution to PDE (5.33) can be found using the method of separation of variables
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Figure 5.3: The evolution ofH1
[0,1]-norm of solutions to (5.30) with λ = 1.2π2 for different

initial conditions. The red and green lines show the boundaries of Yu and U0, respectively.

as

u(t, x) =
∞∑
n=1

2 (1− (−1)n)

π2n3
e( λ

π2−n2)π2t sin(nπx). (5.34)

The solutions to (5.33) are convergent to the null solution u(t, x) = 0, x ∈ [0, 1], t > 0

in L2
Ω for λ < π2 [116, p. 11]. In this example, we are interested in upper-bounding an

output functional of the solutions when λ = 10π2, i.e., the unstable solutions. We consider

the following barrier functional structure

B(t, u) =

∫ 1

0

b(t, x,D1u) dx, (5.35)

with b ∈ R[t, x,D1u]. We investigate the bounds on the heat flux emanating from the

boundary x = 0 at time T = 0.01 given by

y(T ) = ∂xu(T, 0). (5.36)

The results are given in Table 5.1. It can be observed that the bounds approach the actual

heat flux y(0.01) ≈ 3.2512 as the degree of b increases. The constructed certificates of
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Table 5.1: Obtained upper bounds of functional (5.36) of system (5.35).

deg(b) 1 2 3 4 5 6
γ? 8.0447 5.8035 3.9637 3.3418 3.2919 3.2555

degree 4 in b is given below

b(t, x,D1u) =− 7.1441t2u2 + 1.7154t2u∂xu− 20.228t2u− 7.5293t2(∂xu)2 − 3.0302t2∂xu

+ 84.477t2 + 5.306txu2 + 4.439tu2 − 11.394txu∂xu+ 4.0763tu∂xu

+ 11.385tux+ 9.753tu− 0.7447tx(∂xu)2 + 0.55552t(∂xu)2 − 4.2529tx∂xu

+ 1.3549t∂xu− 42.631tx− 28.656t− 6.9887x2u2 + 5.7104xu2

− 2.3317u2 − 0.21259x2u∂xu+ 2.3274xu∂xu− 1.7012u∂xu+ 5.7105x2u

− 6.7309xu− 0.23359u− 0.3866x2(∂xu)2 + 0.326x(∂xu)2 − 0.04805(∂xu)2

− 0.01152x2∂xu+ 0.062023x∂xu− 0.020951∂xu.

The second output functional of interest is given by

y(T ) =

∫ T

0

∂xu(τ, 0) dτ. (5.37)

with T = 0.05. We define the unsafe set as

Yu =

{
u ∈ Ub |

∫ 1

0

∂x ((x− 1)∂xu(τ, x)) dxdτ ≥ ∂tγ

}
.

With the above formulation, it is clear that the larger the set Yu for which we can find a bar-

rier functional, the tighter the upper bound of the output functional (5.37). Applying Corol-

lary 5.2.4, the minimum γ? such that certificates for safety verification at time T = 0.05

could be found are provided in Table 5.2. It can be inferred from the table that the results

are converging to the exact solution of the functional which can be obtained from (5.34) as

y(0.05) ≈ 1.2402. In these numerical experiments, we set deg(γ(t)) = deg(b) + 3. The
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Table 5.2: Obtained upper bounds of functional (5.37) of system (5.35).

deg(b) 1 2 3 4 5 6
γ? 6.7374 4.6736 2.2749 1.4175 1.2921 1.2524

obtained certificates for bounding the state functional with b of degree 4 were:

γ(t) = 964.11t7 + 6.7729t6 + 66.924t5 + 32.375t4 + 100.79t3 − 4.5509t2 + 5.7891t,

and (5.35) with

b(t, x,D1u) =− 1.6454t2u2 + 0.37053t2u∂xu− 2.14t2u− 1.2514t2(∂xu)2

+ 0.15851t2∂xu+ 3.8517t2 + 2.6005txu2 + 1.672tu2

− 2.5321tu(∂xu)2 + 0.69396tu∂xu+ 3.6274txu+ 1.3629tu

− 0.13896tx(∂xu)2 + 0.24091t(∂xu)2 − 0.18622tx∂xu+ 0.016255t∂xu

− 7.0307tx− 2.1521t− 6.3404x2u2 + 4.1574xu2

− 1.9985u2 + 0.19901x2u∂xu+ 0.54298xu∂xu− 0.69336u∂xu

+ 0.75643x2u− 1.1887xu− 0.048215u− 0.20306x2(∂xu)2

+ 0.16273x(∂xu)2 − 0.021415(∂xu)2 − 0.0023234x2∂xu+ 0.014826x∂xu

− 0.0032264∂xu.

5.5 Conclusions

We considered the safety verification problem of PDEs, i.e., given the set of initial con-

ditions and the unsafe set, checking whether the solutions of the PDE avoid the unsafe

set. The safety verification problem is reformulated as the existence of a barrier functional

satisfying a set of integral inequalities. Furthermore, equipped with the safety verification

method, we proposed a scheme to upper-bound output functionals of a class of PDEs by

barrier functionals. In the case of polynomial dependence on both independent and depen-
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dent variables, we used SOS programming to construct the barrier functionals by solving

SDPs. The proposed method was illustrated using two examples.

In the following chapter, we apply the tools developed in Chapter 3 and Chapter 4 to

fluid flow analysis.
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Chapter 6

Input-Output Analysis of Fluid Flows

In Chapter 4, we discussed a method based on dissipation inequalities for the input-state/output

analysis of PDEs. One important area in which PDE models are used is in describing the

dynamics of incompressible fluid flows. For such flows, the dynamics is described by a set

of nonlinear PDEs known as the Navier-Stokes equations. The input-output and stability

properties of such flows are then characterized in terms of a dimensionless parameter Re

called the Reynolds number.

In this chapter, we consider input-output and stability properties of a class of incom-

pressible viscous fluid flows. To be precise, we study flows subject to perturbations that are

constant in one of the three spatial coordinates. With this assumption, we obtain the pertur-

bation dynamics-a nonlinear PDE with 3 vector fields in two spatial coordinates. Alterna-

tive forms of this model were used in [40] for modeling turbulence. In particular, we study

streamwise constant perturbations. This is motivated by the transient growth analyses of

the linearized Navier-Stokes equations for channel flows [77, 45, 37] suggesting that the

streamwise constant modes receive largest energy growth, pseudo-spectral analysis of the

linearized Navier-Stokes [123] implying that streamwise constant perturbations have the

maximum energy growth, and the Squire’s Theorem which states that the two-dimensional

perturbations are the least stable among all perturbations [50].
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The input-output analysis method proposed in this chapter entails both channel flows1

and pipe flows.

Based on a set of dissipation inequalities, we study input-output properties such as

maximum energy growth, induced L2-norms from body forces to perturbation velocities

and ISS. We propose a class of Lyapunov and storage functionals that takes advantage of the

flow structure and leads to a quadratic integrand in the resultant integral inequalities. For

streamwise constant perturbations, we formulate conditions based on matrix inequalities.

We show that in the case of polynomial base flow profiles, the matrix inequalities can

be checked via convex optimization. We illustrate the proposed method by studying four

flows, namely, the Taylor-Couette flow, the plane Couette flow, the plane Poiseuille flow

and the Hagen-Poiseuille flow.

The preliminary version of the results discussed in this chapter was presented at the

2015 54th IEEE Conference on Decision and Control [4]. A journal article including the

discussions on pipe flows and more examples is currently under preparation.

6.1 The Flow Perturbation Model

Let I be an index set corresponding to the spatial coordinates. The dynamics of incom-

pressible viscous flows are described by the Navier-Stokes equations, given by

∂tū =
1

Re
∇2ū− ū · ∇ū−∇p̄+ F ū + d,

0 = ∇ · ū, (6.1)

where t > 0, F ∈ R3×3 represents terms coming from rotation, and x ∈ Ω = Ωi ×

Ωj ⊂ R × R with i 6= j, i, j ∈ I are the spatial coordinates. The dependent variable

d : R≥0 × Ω → R3 is the input vector representing exogenous excitations or body forces,

1The type of fluid flow within a conduit with a free surface, known as a channel. A channel flow has a
free surface, whereas the pipe flow does not.
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ū : R≥0 × Ω→ R3 is the velocity vector, and p̄ : R≥0 × Ω→ R is the pressure.

We consider perturbations (u, p) to the steady solution (U , P ), which are constant in

one of the directions, say xm, m ∈ I , i.e., ∂xm = 0. Let I0 = I − {m}. The perturbations

are described as

ū = u + U , p̄ = p+ P, (6.2)

where (U , P ) satisfy

0 =
1

Re
∇2U −U · ∇U −∇P + FU ,

0 = ∇ ·U . (6.3)

Substituting (6.2) in (6.1) and using (6.3), we obtain the perturbation dynamics

∂tu =
1

Re
∇2u− u · ∇u−U · ∇u− u · ∇U −∇p+ Fu + d,

0 = ∇ · u. (6.4)

In the rest of the chapter, we study the properties of PDE (6.4). We concentrate on pertur-

bations with no-slip boundary conditions u|∂Ω ≡ 0 (the fluid has zero velocity relative to

the solid boundaries) and periodic boundary conditions (in the the direction with symmetry

in the flow).

6.2 Flow Stability and Input-Output Analysis Using Dis-

sipation Inequalities

Our analysis of the nonlinear flow model (6.4) is based on dissipativity theory for systems

described by PDEs as outlined in Chapter 4. Next, we define the stability and input-output

properties of interest. We use several terms from the hydrodynamics literature. Nonethe-

less, the connection to the input-output properties discussed in Chapter 4 will be clarified
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whenever needed.

We study exponential stability of perturbation velocities.

Definition 6.2.1 (Exponential Stability) Let p0 ∈ R3. The stationary solution (0, p0)

of (6.4) with d ≡ 0 is exponentially stable in the L2
Ω-norm, if there exist λ > 0 and

c > 0, such that for all t ≥ 0

‖u(t, ·)‖2
L2

Ω
≤ c‖u(0, ·)‖2

L2
Ω
e−λt. (6.5)

That is, system (6.1) converges to the base flow (U , P ) satisfying (6.3).

If the perturbation velocities are exponentially stable, we can study bounds on the max-

imum energy growth from initial conditions. In the context of linear systems, this corre-

sponds to maximum transient growth [123].

Definition 6.2.2 (Energy Growth Boundedness) Let d ≡ 0 in (6.4). There exists a con-

stant γ > 0 such that

‖u‖2
L2

[0,∞),Ω
≤ γ2‖u(0, ·)‖2

L2
Ω
. (6.6)

The energy growth bound inequality given in (6.6) determines how much the energy of

initial perturbations is amplified. The minimum γ such that (6.6) holds provides an upper-

bound to maximum energy growth for the flow. The next property of interest is related to

amplifications from body forces or inputs rather than initial conditions.

Definition 6.2.3 (Worst-Case Input Amplification) For some ηi > 0, i ∈ I ,

‖u‖2
L2

[0,∞),Ω
≤
∑
i∈I

η2
i ‖di‖2

L2
[0,∞),Ω

, (6.7)

subject to zero initial conditions u(0, x) ≡ 0, ∀x ∈ Ω.

The above property is equivalent to the induced L2-norm. Due to nonlinear flow dy-

namics, the actual induced L2-norm of system (6.4) is a nonlinear function of ‖d‖L2
[0,∞),Ω
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(see Example 4.5.3). The quantities ηi, i ∈ I provide upper-bounds on the actual induced

L2-norms.

The definition of the worst-case input amplification requires the inputs (or forcings)

to be square integrable. This automatically leads to the exclusion of persistent forcings,

such as constant forcings and sinusoidal forcings that are defined for all time. To include

these classes of forcings as well, we employ input-to-state stability. In this case, the only

requirement on the forcings is that they should be upper-bounded.

Definition 6.2.4 (Input-to-State Stability) For some scalar ψ > 0, functions β, β̃, χ ∈

K∞, and σ ∈ K, it holds that

‖u(t, ·)‖L2
Ω
≤ β

(
e−ψtχ

(
‖u(0, ·)‖L2

Ω

))
+ β̃

(
sup
τ∈[0,t)

( ∫
Ω

σ
(
|d(τ, x)|

)
dΩ
))

, (6.8)

for all t > 0.

The ISS property (6.8) implies the exponential convergence to the base flow (U , P ) in

L2
Ω when d ≡ 0. Moreover, as t→∞, we obtain

lim
t→∞
‖u(t, ·)‖L2

Ω
≤ β̃

(∫
Ω

‖σ(|d(·, x)|)‖L∞
[0,∞)

dΩ

)
≤ β̃

(∫
Ω

σ(‖d(·, x)‖L∞
[0,∞)

) dΩ

)
,

(6.9)

wherein, the fact that σ, β ∈ K is used. Hence, as long as the external excitations or body

forces d are bounded in the L∞[0,∞)-norm, the perturbation velocities u are bounded in the

L2
Ω-norm.

The next result converts the tests for exponential stability, energy growth boundedness,

worst-case input amplification (induced L2-norms), and ISS into verifying a set of dis-

sipation inequalities, thanks to dissipativity theory, which allows for the analysis of the

nonlinear flow model.
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Theorem 6.2.5 Consider the perturbation model (6.4). If there exist a positive semidefinite

storage functional V (u), positive scalars {ηi}i∈I , {ci}i∈{1,2,3}, ψ, and functions β1, β2 ∈

K∞, σ ∈ K, such that

I) when d ≡ 0,

c1‖u(t, ·)‖2
L2

Ω
≤ V (u) ≤ c2‖u(t, ·)‖2

L2
Ω
, (6.10)

dV (u(t, x))

dt
≤ −c3‖u(t, ·)‖2

L2
Ω
, (6.11)

then, system (6.4) is exponentially stable.

II) when d ≡ 0, the system is exponentially stable and

V (u) ≤ γ2‖u(t, ·)‖2
L2

Ω
, (6.12)

dV (u(t, x))

dt
≤ −

∫
Ω

u′(t, x)u(t, x) dΩ, (6.13)

then, it has bounded energy growth as given by (6.6).

III)

dV (u(t, x))

dt
≤ −

∫
Ω

u′(t, x)u(t, x) dΩ +

∫
Ω

∑
i∈I

η2
i d

2
i (t, x) dΩ, (6.14)

then system (6.4) has induced L2-norm upper-bounds ηi, i ∈ I as in (6.7).

IV)

β1(‖u(t, ·)‖L2
Ω
) ≤ V (u) ≤ β2(‖u(t, ·)‖L2

Ω
), (6.15)

dV (u(t, x))

dt
≤ −ψV (u(t, x)) +

∫
Ω

σ(|d(t, x)|) dΩ, (6.16)

then system (6.4) is ISS and satisfies (6.8) with χ = β2, β = β−1
1 ◦ 2 and β̃ = β−1

1 ◦ 2
ψ

.

Proof: Items I, III, and IV are direct applications of Theorem 3.3.1 in Chapter 3 and

Theorem 4.1.5 in Chapter 4. For Item II, integrating both sides of (6.13) with respect to
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time from 0 to∞ yields

V (u(∞, x))− V (u(0, x)) ≤ −‖u‖2
L2

[0,∞),Ω
.

Since the system is exponentially stable, u(∞, x) = 0 and therefore V (u(∞, x)) = 0.

Thus, we obtain

−V (u(0, x)) ≤ −‖u‖2
L2

[0,∞),Ω
.

Multiplying both sides of the above inequality by −1 yields

V (u(0, x)) ≥ ‖u‖2
L2

[0,∞),Ω
.

Applying (6.12), we get

γ2‖u(0, ·)‖2
L2

Ω
≥ V (u(0, x)) ≥ ‖u‖2

L2
[0,∞),Ω

,

which is identical to (6.6). �

In this following, we derive classes of storage functionals V (u) suitable for the analysis

of perturbation dynamics (6.4) constant in one of the three spatial coordinates. We consider

two classes of flows, namely, channel flows and pipe flows.

6.2.1 Channel Flows: Cartesian Coordinates

In Cartesian coordinates, for a scalar function v, ∇v =
∑

i ∂xiv
−→e i and ∇2v =

∑
i ∂

2
xi
v,

where−→e i is the unit vector in the direction xi. For a vector valued function w =
∑

iwi
−→e i,

the divergence ∇ · w is given by ∇ · w =
∑

i ∂xiwi. In the following, {x1, x2, x3} cor-

responds to {x, y, z} and I = {1, 2, 3}. Additionally, we adopt Einstein’s multi-index

notation over index j, that is the sum over repeated indices j, e.g., vj∂xjui =
∑

j vj∂xjui.
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The perturbation model (6.4) can be re-written as

∂tui =
1

Re
∇2ui − uj∂xjui − Uj∂xjui − uj∂xjUi − ∂xip+ Fijuj + di,

0 = ∂xjuj. (6.17)

where i, j ∈ I and Fij is the (i, j) entry of F . To simplify the exposition, without

loss of generality, we assume that the perturbations are constant with respect to x1. Since

xi, i = 1, 2, 3 are arbitrary, this does not affect the formulation. This assumption is used

so that the presentation of the proof of Proposition 6.2.6 becomes more compact.

The next proposition states that, by choosing a suitable Lyapunov/storage functional

structure, the time derivative of the Lyapunov/storage functional turns out to be a quadratic

form in the dependent variables u and their spatial derivatives. This property paves the way

for a convex optimization based method to check stability and input-output properties.

Proposition 6.2.6 Consider the perturbation model (6.17) subject to periodic or no-slip

boundary conditions u|∂Ω = 0. Assume the velocity perturbations in (6.17) are constant

with respect to x1. Let I0 = {2, 3} and

V (u) =
1

2

∫
Ω

u′Qu dΩ, (6.18)

where Q =

[
q1 0 0
0 qi 0
0 0 qj

]
> 0, qi = qj for i 6= j, i, j ∈ I0, be a candidate Lyapunov or storage

functional. Then, the time derivative of (6.18) satisfies

∂tV (u) ≤ −
∑
i∈I

qi

∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi − uiFijuj − uidi

)
dΩ,

(6.19)

where C > 0.
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Proof: The time derivative of Lyapunov functional (6.18) along the solutions of (6.17)

can be computed as

∂tV (u) =
∑
i∈I

∫
Ω

qi

(
1

Re
ui∇2ui − ujui∂xjui

− Ujui∂xjui − ujui∂xjUi − ui∂xip+ uiFijuj + uidi

)
dΩ. (6.20)

Consider
∫

Ω
qiujui∂xjui dΩ. Using the boundary conditions, integration by parts and the

incompressibility condition ∂xjuj = 0, we obtain

∫
Ω

qiujui∂xjui dΩ =
1

2

∫
Ωi

qiuju
2
i |∂Ωj dxi −

1

2

∫
Ω

qiu
2
i

(
∂xjuj

)
dΩ = 0.

Consider the pressure terms
∫

Ω
qiui∂xip dΩ. Since the perturbations are assumed constant

in x1, we have

∫
Ω

(q2u2∂x2p+ q3u3∂x3p) dΩ

=

∫
Ω3

(q2u2p)|∂Ω2 dx3 +

∫
Ω2

(q3u3p)|∂Ω3 dx2 −
∫

Ω

(q2∂x2u2p+ q3∂x3u3p) dΩ

= −
∫

Ω

(q2∂x2u2 + q3∂x3u3) p dΩ, (6.21)

where, in the first equality above, we use integration by parts and, in the second inequality,

we use the boundary conditions. Then, if q2 = q3, using the incompressibility condi-

tion ∂x2u2 + ∂x3u3 = 0, (6.21) equals zero. Therefore, the time derivative of the Lya-

punov/storage functional (6.20) is modified to

∂tV (u) =
∑
i∈I

∫
Ω

qi

(
1

Re
ui∇2ui − Ujui∂xjui − ujui∂xjUi + uiFijuj + uidi

)
dΩ.

(6.22)
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Integrating by parts the ui∇2ui term and using the boundary conditions, we get

∂tV (u) =
∑
i∈I

∫
Ω

qi

(−1

Re
(∂xiui)

2 − Ujui∂xjui − ujui∂xjUi + uiFijuj + uidi

)
dΩ.

(6.23)

Applying the Poincaré inequality to (6.23), we obtain (6.19). �

Remark 6.2.7 A special case of (6.18) was used in [56] to study the stability of viscous

flows (subject to streamwise constant perturbations) in pipes and between rotating cylin-

ders. The authors referred to this structure as the two energy function. In the formulation

presented in this chapter, assuming constant perturbations in the x1-direction, we can rep-

resent the two energy function as

V (u) =
1

2

∫
Ω

u′
[
q 0 0
0 1 0
0 0 1

]
u dΩ,

where q > 0 is a constant. The “optimal” value for this constant was then calculated

analytically for the pipe Poiseuille and the rotating Couette flow.

In the sequel, we use structure (6.18) as a Lyapunov functional when studying stability

and as a storage functional when studying input-output properties.

The next corollary proposes integral inequalities under which properties such as stabil-

ity, energy growth bounds, input-state induced L2 bounds and ISS can be inferred for the

flow described by (6.17).

Corollary 6.2.8 Consider the perturbation dynamics described by (6.17) subject to pe-

riodic or no-slip boundary conditions u|∂Ω = 0. Assume the velocity perturbations are

constant with respect to x1. Let I0 = {2, 3}. If there exist positive constants qi, i ∈ I , with

qi = qj , i, j ∈ I0, positive scalars {ψi}i∈I , {η}i∈I , and σ ∈ K such that
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I) when d ≡ 0,

∑
i∈I

qi

∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi − uiFijuj

)
dΩ > 0, (6.24)

II) when d ≡ 0,

∑
i∈I

∫
Ω

((
qiC(Ω)

Re
− 1

)
u2
i + qiUjui∂xjui+ qiujui∂xjUi− qiuiFijuj

)
dΩ ≥ 0, (6.25)

III)

∑
i∈I

∫
Ω

((
qiC(Ω)

Re
− 1

)
u2
i + qiUjui∂xjui

+ qiujui∂xjUi − qiuiFijuj − qiuidi + η2
i d

2
i

)
dΩ ≥ 0 (6.26)

IV)

∑
i∈I

∫
Ω

((
qiC(Ω)

Re
− ψiqi

)
u2
i + qiUjui∂xjui + qiujui∂xjUi − qiuiFijuj

− qiuidi + σ(|d|)
)
dΩ ≥ 0 (6.27)

Then,

I) perturbation velocities given by (6.17) are exponentially stable. Therefore, the flow con-

verges to the base flow exponentially.

II) system (6.17) has bounded energy growth as described by (6.6) with γ2 = maxi∈I qi.

III) under zero perturbation initial conditions u(0, x) ≡ 0, the induced L2-norm from in-

puts to perturbation velocities is bounded by ηi, i ∈ I as in (6.7).

IV) the perturbation velocities described by (6.17) are ISS in the sense of (6.8).
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Proof: Each item is proven as follows.

I) Considering Lyapunov functional (6.18), inequality (6.10) is satisfied with c1 = mini∈I qi

and c2 = maxi∈I qi. Re-arranging the terms in (6.24) gives

−
∑
i∈I

qi

∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi − uiFijuj − uidi

)
dΩ < 0. (6.28)

Then, from Proposition 6.2.6, we infer that, for d ≡ 0, ∂tV (u) < 0. By continuity, we

infer that there exists c3 > 0 such that (6.11) holds. Then, form Item I in Theorem 6.2.5,

we infer that the perturbation velocities are exponentially stable.

II) Given storage functional structure (6.18), we have

V (u(t, x)) ≤ λM(Q)

∫
Ω

u′u dΩ,

where λM(Q) denotes the maximum eigenvalue of Q. Since Q is diagonal, we have

λM(Q) = maxi∈I qi. Therefore, (6.12) is satisfied with γ2 = maxi∈I qi. Re-arranging

terms in (6.25) yields

−
∑
i∈I

qi

∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi − uiFijuj

)
dΩ ≤

∑
i∈I

∫
Ω

u2
i dΩ.

Applying Proposition 6.2.6 with d ≡ 0, we obtain

∂tV (u) ≤
∑
i∈I

∫
Ω

u2
i dΩ.

Thus, inequality (6.13) is also satisfied. Applying Item II from Theorem 6.2.5, we infer

that the system has bounded energy growth.
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III) Re-arranging terms in (6.26) yields

−
∑
i∈I

qi

∫
Ω

(
C(Ω)

Re
u2
i + Ujui∂xjui + ujui∂xjUi − uiFijuj − uidi

)
dΩ

≤ −
∑
i∈I

∫
Ω

u2
i dΩ +

∑
i∈I

∫
Ω

η2
i d

2
i dΩ (6.29)

Then, from (6.19) in Proposition 6.2.6, we deduce that

∂tV (u) ≤ −
∑
i∈I

∫
Ω

u2
i dΩ +

∑
i∈I

∫
Ω

η2
i d

2
i dΩ.

From Item II in Theorem 6.2.5, we infer that, under zero initial conditions, the perturbation

velocities satisfy (6.7).

IV) Adopting (6.18) as a storage functional, (6.15) is satisfied with β1(·) = mini∈I qi(·)2

and β2(·) = maxi∈I qi(·)2. Re-arranging the terms in (6.27), we obtain

−
∑
i∈I

∫
Ω

(
qiC(Ω)

Re
u2
i + qiUjui∂xjui + qiujui∂xjUi − qiuiFijuj − qiuidi

)
dΩ

≤ −
∑
i∈I

ψi

∫
Ω

qiu
2
i dΩ +

∫
Ω

σ(|d|) dΩ (6.30)

From (6.19) in Proposition 6.2.6, it follows that

∂tV (u) ≤ −ψV (u) +

∫
Ω

σ(|d|) dΩ, (6.31)

with ψ = mini∈I ψi. Then, from Item III in Theorem 6.2.5, we infer that the perturbation

velocities satisfy the ISS property (6.8). �

6.2.2 Pipe Flows: Cylindrical Coordinates

We now turn our attention to flows in cylindrical coordinates (r, θ, z). In cylindrical coordi-

nates, the gradient and Laplacian operators are, respectively, defined as∇c(·) = ∂r(·)−→e r +
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1
r
∂θ(·)−→e θ + ∂z(·)−→e z and∇2

c(·) = 1
r
∂r (r∂r(·)) + 1

r2∂
2
θ (·) + ∂2

z (·). The Navier-Stokes equa-

tions in cylindrical coordinates are then given by

∂tūr =
1

Re

(
∇2
c ūr −

ūr
r2
− 2

r2
∂θūθ

)
− ū · ∇cūr +

ū2
θ

r
− ∂rp̄+ F ′rū + dr

∂tūθ =
1

Re

(
∇2
c ūθ −

ūθ
r2

+
2

r2
∂θūr

)
− ū · ∇cūθ −

ūθūr
r
− 1

r
∂θp̄+ F ′θū + dθ

∂tūz =
1

Re
∇2
c ūz − ū · ∇cūz − ∂zp̄+ F ′zū + dz

0 =
1

r
∂r (rūr) +

1

r
∂θūθ + ∂zūz, (6.32)

where ū = (ūr, ūθ, ūz)
′ and [ F ′r F ′θ F ′z ]′ = F ∈ R3×3.

In this section, we consider the flow perturbations that are constant in z-direction. The

base flow is given by U = Um(r, θ)−→e z and P . For such flows, substituting ū = u + U

and p̄ = P + p in (6.32), the perturbation dynamics is obtained as

∂tur =
1

Re
∇2
cur − ur∂rur −

uθ∂θur
r

+
u2
θ

r
− ur
r2Re

− 2∂θuθ
r2Re

− ∂rp+ F ′ru + dr,

∂tuθ =
1

Re
∇2
cuθ − ur∂ruθ −

uθ∂θuθ
r
− uruθ

r
− uθ
r2Re

− 2∂θuθ
r2Re

− 1

r
∂θp+ F ′θu + dθ,

∂tuz =
1

Re
∇2
cuz − ur∂ruz − ur∂rUm −

uθ∂θUm
r

− uθ∂θuz
r

+ F ′zu + dz,

0 = ∂r(rur) + ∂θuθ, (6.33)

wherein u = (ur, uθ, uz)
′.

Proposition 6.2.9 Consider the perturbation dynamics in cylindrical coordinates (6.33)

with periodic or no-slip boundary conditions u |∂Ω= 0. The time derivative of Lya-

punov/storage functional

V (u) =
1

2

∫
Ω

[
ur
uθ
uz

]′ [ qr 0 0
0 qθ 0
0 0 qz

] [
ur
uθ
uz

]
rdrdθ, (6.34)
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with qr = qθ, satisfies

∂tV (u) ≤ −
∫

Ω

(
qrC

Re
u2
r + qz∂rUmuruz +

qzC

Re
u2
z +

qz
r
∂θUmuθuz +

qθC

Re
u2
θ

− qrurF ′ru− qθuθF ′θu− qzuzF ′zu− qrurdr − qθuθdθ − qzuzdz
)
rdrdθ, (6.35)

where C > 0.

Proof: The time derivative of the Lyapunov/storage functional (6.34) is given by

∂tV (u) =

∫
Ω

(
− rqru2

r∂rur − qruruθ∂θur + qruru
2
θ − rqr∂rpur

+
qr
Re

rur∇2
cur −

qru
2
r

Rer
− 2qrur∂θuθ

rRe
+ qrrurF

′
ru + qrrurdr

)
dθdr

+

∫
Ω

(
− rqθuruθ∂ruθ − qθuruθ∂θur − qθuru2

θ − qθ∂θpuθ

+
qθ
Re

ruθ∇2
cuθ −

qθu
2
θ

rRe
+

2qθ∂θuruθ
rRe

+ qθruθF
′
θu + qθruθdθ

)
drdθ

+

∫
Ω

(
− rqzuruz∂ruz − rqzuruz∂rUm − qz∂θUmuθuz − qzuθuz∂ruz

+
qz
Re

ruz∇2
cuz + qzruzF

′
zu + qzruzdz

)
drdθ. (6.36)

From the incompressibility condition ∂r(rur) + ∂θuθ = 0 and the fact that qr = qθ, we

obtain

∫
Ω

(−rqr∂rpur − qθ∂θpuθ) drdθ =

∫
Ω

(qr∂r(rur)p+ qθ∂θup) drdθ

=

∫
Ω

qrp (∂r(rur) + ∂θu) drdθ = 0. (6.37)

where, in the first equality above, we used integration by parts and the boundary conditions.

Furthermore, using integration by parts, boundary conditions and the incompressibility
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condition it can be shown that

∫
Ω

(
−rqru2

r∂rur − qruruθ∂θur
)
drdθ =

∫
Ω

(
qru

2
r

2
∂r(rur) +

qru
2
r

2
∂θuθ

)
drdθ = 0,

∫
Ω

(
−rqθuruθ∂ruθ − qθu2

θ∂θuθ
)
drdθ =

∫
Ω

(
qθu

2
θ

2
∂r(rur) +

qθu
2
θ

2
∂θuθ

)
drdθ = 0,

∫
Ω

(−rqzuruz∂ruz − qzuθuz∂θuz) drdθ =

∫
Ω

(
qzu

2
z

2
∂r(rur) +

qzu
2
z

2
∂θuθ

)
drdθ = 0,

and

∫
Ω

(
−2qrur∂θuθ

rRe
− 2qθ∂θuruθ

rRe

)
drdθ =

∫
Ω

2qr
rRe

(−ur∂θuθ + ur∂θuθ) drdθ = 0.

Then, the time derivative expression (6.36) simplifies to

∂tV (u) =

∫
Ω

(
qr
Re

rur∇2
cur −

qru
2
r

Rer
+ qrrurF

′
ru + qrrurdr

)
dθdr

+

∫
Ω

(
qθ
Re

ruθ∇2
cuθ −

qθu
2
θ

rRe
+ qθruθF

′
θu + qθruθdθ

)
drdθ

+

∫
Ω

(
− rqzuruz∂rUm − qz∂θUmuθuz +

qz
Re

ruz∇2
cuz + qzruzF

′
zu + qzruzdz

)
drdθ.

(6.38)

Factoring out r yields

∂tV (u) =

∫
Ω

(
qr
Re

ur∇2
cur −

qru
2
r

r2Re
+ qrurF

′
ru + qrurdr

)
rdθdr

+

∫
Ω

(
qθ
Re

uθ∇2
cuθ −

qθu
2
θ

r2Re
+ qθuθF

′
θu + qθuθdθ

)
rdrdθ

+

∫
Ω

(
− qzuruz∂rUm −

qz
r
∂θUmuθuz +

qz
Re

uz∇2
cuz + qzuzF

′
zu + qzuzdz

)
rdrdθ.

(6.39)
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Since the terms qru2
r

r2Re
and qθu

2
θ

r2Re
are non-negative, it follows that

∂tV (u) ≤
∫

Ω

(
qr
Re

ur∇2
cur +

qθ
Re

uθ∇2
cuθ +

qz
Re

uz∇2
cuz − qzuruz∂rUm −

qz
r
∂θUmuθuz

− qrurF ′ru− qθuθF ′θu− qzuzF ′zu− qrurdr − qθuθdθ − qzuzdz
)
rdrdθ

= −
∫

Ω

(
qr
Re
|∇cur|2 +

qθ
Re
|∇cuθ|2 +

qz
Re
|∇cuz|2 + qzuruz∂rUm +

qz
r
∂θUmuθuz

− qrurF ′ru− qθuθF ′θu− qzuzF ′zu− qrurdr − qθuθdθ − qzuzdz
)
rdrdθ, (6.40)

where in the last equality above integration by parts and the boundary conditions were used.

Applying the Poincaré inequality (Lemma 2.2.3 ), we obtain (6.35). �

6.3 Convex Formulation for Streamwise Constant Pertur-

bations

In this section, we show that the input-output analysis problem for the class of streamwise

constant perturbations can be converted into a set of matrix inequalities. These matrix in-

equalities can be solved by convex optimization, provided that the base flow is a polynomial

in the spatial coordinates and the flow geometry is a semi-algebraic set.

6.3.1 Convex Formulation: Channel Flows

To present a convex method for checking the conditions in Corollary 6.2.8, we restrict

our attention to streamwise constant perturbations in the x1-direction with base flow U =

Um(x)−→e 1.

Corollary 6.3.1 Consider the perturbation dynamics given by (6.17), that are constant in

the streamwise direction x1 and with base flow U = Um(x)−→e 1. Let I0 = {2, 3}. If there

exist positive constants {ql}l∈I with qi = qj , i, j ∈ I0, {ηl}l∈I , {ψl}l∈I , and functions
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{σl}l∈I such that

I)

M(x) =
(
C
Re
− F11

)
q1

q1(∂xjUm(x)−F1j)−qjFj1
2

q1(∂xiUm(x)−F1i)−qiFi1
2

q1(∂xjUm(x)−F1j)−qjFj1
2

(
C
Re
− Fjj

)
qj − qjFj1

2

q1(∂xiUm(x)−F1i)−qiFi1
2

− qjFj1
2

(
C
Re
− Fii

)
qi

 ≥ 0,

i, j ∈ I0, i 6= j, x ∈ Ω. (6.41)

II) when d ≡ 0,

M (x)− I3×3 ≥ 0, x ∈ Ω, (6.42)

III)

N(x) =



− q1
2

0 0

M(x)− I3×3 0 − qj
2

0

0 0 − qi
2

− q1
2

0 0 η2
1 0 0

0 − qj
2

0 0 η2
i 0

0 0 − qi
2

0 0 η2
j


≥ 0, (6.43)

for i, j ∈ I0, i 6= j and x ∈ Ω,

IV) σl(x) ≥ 0, x ∈ Ω, l ∈ I and

Z(x) =



− q1
2

0 0

M(x)−W 0 − qj
2

0

0 0 − qi
2

− q1
2

0 0 σ1(x) 0 0

0 − qj
2

0 0 σj(x) 0

0 0 − qi
2

0 0 σi(x)


≥ 0, (6.44)

for i, j ∈ I0, i 6= j and x ∈ Ω, where W =

[
ψ1q1 0 0

0 ψjqj 0
0 0 ψiqi

]
. Then, it follows that
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I) the perturbation velocities are exponentially stable,

II) the system has energy growth bound γ2 = maxi∈I qi as described by (6.6),

III) subject to zero initial conditions, the induced L2 norm from inputs to perturbation

velocities is bounded by ηi, i ∈ I as in (6.7),

IV) the perturbation velocities are ISS in the sense of (6.8) with σ(|d|) =
∑

i∈I σi(x)d2
i .

Proof: The proof is straightforward and follows from computing conditions (6.24)-(6.27)

considering perturbations that are constant in x1, the base flow U = Um
−→e 1, and σ(|d|) =∑

i∈I σi(x)d2
i . Since the flow perturbations are constant in x1 and the base flow is given by

U = Um
−→e 1, we have Ujui∂xjui = 0, i ∈ I .

I) Inequality (6.24) is given by

A =

∫
Ω

((
C(Ω)

Re
− Fii

)
qiu

2
i − ui(qiFij)uj − ui(qiFi1)u1

+

(
C(Ω)

Re
− Fjj

)
qju

2
j − uj(qjFji)ui − uj(qjFj1)u1(

C(Ω)

Re
− F11

)
q1u

2
1 + u1(∂xiUm − F1i)ui + u1(∂xjUm − F1j)

)
dΩ ≥ 0 (6.45)

for i, j ∈ I0, i 6= j, which can be rewritten as

∫
Ω

[
u1
uj
ui

]′
M(x)

[
u1
uj
ui

]
dΩ ≥ 0. (6.46)

with M(x) given in (6.41). Therefore, if (6.41) is satisfied, (6.46) also holds and from

Item I in Corollary 6.2.8 we infer that the perturbation velocities are exponentially stable.

II) The proof follows from the proof of Item I. Inequality (6.25) can be re-written as

∫
Ω

[
u1
uj
ui

]′
M(x)

[
u1
uj
ui

]
dΩ−

∫
Ω

[
u1
uj
ui

]′ [ u1
uj
ui

]′
dΩ ≥ 0. (6.47)

Thus, if inequality (6.42) holds, inequality (6.47) is satisfied. Therefore, from Corol-

lary 6.2.8, we infer that the energy growth is bounded.
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III) Inequality (6.26) is changed to

A+

∫
Ω

(qiuidi + qjujdj + q1u1d1) dΩ−
∫

Ω

(u2
i + u2

j + u2
1) dΩ

+

∫
Ω

(η2
i d

2
i + η2

jd
2
j + η2

1d
2
1) dΩ ≥ 0, (6.48)

for i, j ∈ I0, i 6= j, which can be rewritten as

∫
Ω

 u1
uj
ui
d1
dj
di

′N(x)

 u1
uj
ui
d1
dj
di

 dΩ ≥ 0, (6.49)

where N is defined in (6.43). Consequently, if (6.43) is satisfied for all x ∈ Ω, (6.49) holds

and from Item II in Corollary 6.2.8 we infer that, subject to zero initial conditions, the

induced L2-norm from inputs to perturbation velocities is bounded by ηi, i ∈ I as in (6.7).

IV) The proof follows the same lines as the proof of Item III above. �

When Um(x) ∈ R[x], inequalities (6.41)-(6.44) are polynomial matrix inequalities that

should be checked for all x ∈ Ω. If the set Ω is a semi-algebraic set, i.e.,

Ω =
{

x ∈ R2 | gl(x) = 0, fk(x) > 0, l = 1, 2, . . . , L, k = 1, 2, . . . , K
}
,

where {gl}Ll=1 ∈ R[x] and {fk}Kk=1 ∈ R[x], then these inequalities can be cast as a SOS

program by applying Corollary 2.3.4.

We are interested in estimating bounds on the maximum energy growth of the flow
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under study. To this end, we solve the following optimization problem

min
{qi}i∈I

(
max
i∈I

qi

)
subject to

M(x)− I3×3 ≥ 0,

qi > 0, i ∈ I. (6.50)

In order to find upper-bounds on the induced L2-norm from the body forces or distur-

bances d to the perturbation velocities u, we solve the following optimization problem

min
{qi}i∈I

∑
i∈I η

2
i

subject to

N(x) ≥ 0,

qi > 0, i ∈ I. (6.51)

6.3.2 Convex Formulation: Pipe Flows

Similar to the case of channel flows, in the following, we propose a convex formulation for

pipe flows. The method relies on inequality (6.35). Note that for cylindrical coordinates

I = {r, θ, z} and I0 = {r, θ}.

Corollary 6.3.2 Consider the perturbation dynamics given by (6.33), streamwise constant

in the z-direction with base flow U = Um(r, θ)−→e z. Suppose that there exist positive con-

stants {ql}l∈I with qr = qθ, {ψl}l∈I , and functions {σl}l∈I such that
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I)

Mc(r, θ) = ( C
Re
−Fz,3)qz 1

2
(qz∂rUm−qrFr,3−qzFz,1) qz

2

(
∂θUm
r
−Fz,2

)
−qθFθ,3

1
2

(qz∂rUm−qrFr,3−qzFz,1) ( C
Re
−Fr,1)qr − 1

2(qrFr,2+qθFθ,2)
qz
2

(
∂θUm
r
−Fz,2

)
−qθFθ,3 − 1

2(qrFr,2+qθFθ,2) ( C
Re
−Fθ,2)qθ

 ≥ 0,

(r, θ) ∈ Ω. (6.52)

II) the system is exponentially stable when d ≡ 0 and

Mc (r, θ)− I3×3 ≥ 0, (r, θ) ∈ Ω, (6.53)

III)

Nc(r, θ) =



− qz
2

0 0

Mc(r, θ)− I3×3 0 − qr
2

0

0 0 − qθ
2

− qz
2

0 0 η2
z 0 0

0 − qr
2

0 0 η2
r 0

0 0 − qθ
2

0 0 η2
θ


≥ 0, (r, θ) ∈ Ω, (6.54)

IV) σl(r, θ) ≥ 0, (r, θ) ∈ Ω, l ∈ I and

Zc(r, θ) =



− qz
2

0 0

Mc(r, θ)−Wc 0 − qr
2

0

0 0 − qθ
2

− qz
2

0 0 σz(r, θ) 0 0

0 − qr
2

0 0 σr(r, θ) 0

0 0 − qθ
2

0 0 σθ(r, θ)


≥ 0, (r, θ) ∈ Ω,

(6.55)

where Wc =

[
ψzqz 0 0

0 ψrqr 0
0 0 ψθqθ

]
. Then, it follows that

I) the perturbation velocities are exponentially stable,

130



Figure 6.1: Schematic of the Taylor-Couette flow geometry.

II) the flow has bounded energy growth γ2 = max(qr, qθ, qz) as given by (6.6),

III) subject to zero initial conditions, the induced L2 norm from inputs to perturbation

velocities is bounded,

IV) the perturbation velocities are ISS in the sense of (6.8) with σ(|d|) =
∑

l∈I σl(r, θ)d
2
l .

Note that, depending on ∂θUm, Mc and therefore Nc and Zc can be functions of 1
r
.

Then, inequalities (6.52)-(6.55) become intractable. To circumvent this problem, since r

is positive, we can multiply (6.52)-(6.55) by positive powers of r making the resulting

inequalities solvable by convex optimization methods.

6.4 Examples

In this section, we illustrate the proposed method by analyzing four benchmark flows,

namely, Taylor-Couette flow, plane Couette flow, plane Poiseuille flow and Hagen-Poiseuille

flow.
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6.4.1 Taylor-Couette Flow

We consider the flow of viscous fluid between two co-axial cylinders, where the gap be-

tween the cylinders is much smaller than their radii. In this setting, the flow is schematically

illustrated in Figure 6.1. The axis of rotation is parallel to the x3-axis and the circumfer-

ential direction corresponds to x1-axis. Then, the dynamics of the perturbation velocities

is described by (6.4). The perturbations are assumed to be constant with respect to x1

(∂x1 = 0) and periodic in x3 with period L. The domain is, therefore, defined as

Ω = {(x2, x3) | (x2, x3) ∈ (−1, 1)× (0, L)} .

The base flow is given by U = (x2, 0, 0)′ = x2
−→e 1 and P = P0. In addition, F =[

0 Ro 0
−Ro 0 0

0 0 0

]
, where Ro ∈ [0, 1] is a parameter representing the Coriolis force2. Notice

that the cases Ro = 0, 1 correspond to the Couette flow. We consider no-slip boundary

conditions u|1x2=−1 = 0 and u(t, x2, x3) = u(t, x2, x3 + L). The Poincaré constant is then

given by C = π2

L2+22 .

We are interested in finding estimates of the critical Reynolds number ReC using the

following Lyapunov functional

V (u) =

∫ L

0

∫ 1

−1

[
u1
u2
u3

]′ [ q1 0 0
0 q2 0
0 0 q2

] [
u1
u2
u3

]
dx2dx3,

which is the same as Lyapunov functional (6.18) assuming invariance with respect to x1.

For stability analysis, we need to check inequality (6.41) according to Item I in Corol-

2 That is, Ro = 0 (Ro = 1) corresponds to the case where only the outer (inner) cylinder is rotating and
Ro = 0.5 is the case where both cylinders are rotating with the same velocity but in opposite direction.
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Figure 6.2: Estimated critical Reynolds numbers Re in terms of Ro for Taylor-Couette
flow.

lary 6.3.1. For this flow (m = 1, j = 2, i = 3), we have

M =


q1C
Re

q2Ro−q1(Ro−1)
2

0

q2Ro−q1(Ro−1)
2

q2C
Re

0

0 0 q2C
Re

 ≥ 0. (6.56)

This is a LMI feasibility problem with decision variables q1, q2 > 0.

Let L = π. Figure 6.2 illustrates the estimated lower bounds on the critical Reynolds

numbers ReC as a function of Ro obtained from solving the LMI (6.56) and performing

a line search over Re. These quantities are obtained by fixing Ro and increasing Re until

LMI (6.56) becomes unfeasible. Notice that for the cases Ro = 0, 1 the flow is stable for

all Reynolds numbers.

For inducedL2-norm analysis, we apply inequality (6.43), which for this particular flow

is given by the following LMI
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Figure 6.3: Upper bounds on induced L2-norms from d to perturbation velocities u of
Taylor-Couette flow for different Reynolds numbers: Re = 2 (left), Re = 2.8 (middle),
and Re = 2.83 (right).

N =



− q1
2

0 0

M − I3×3 0 − q2
2

0

0 0 − q2
2

− q1
2

0 0 η2
1 0 0

0 − q2
2

0 0 η2
2 0

0 0 − q2
2

0 0 η2
3


≥ 0,

with M as in (6.56).

Figure 6.3 depicts the obtained results for three different Reynolds numbers. As the

Reynolds number approaches the estimated ReC for Ro = 0.5, the upper-bounds on the

induced L2-norm from the body forces d to perturbation velocities u increase dramatically.

In order to check the ISS property, we check inequality (6.44) from Corollary 6.3.1 for

the Taylor-Couette flow under study, i.e.,

P =



− q1
2

0 0

M −Q 0 − q2
2

0

0 0 − q2
2

− q1
2

0 0 σ1 0 0

0 − q2
2

0 0 σ2 0

0 0 − q2
2

0 0 σ3


≥ 0
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Figure 6.4: Schematic of the plane Couette flow geometry.

with M given in (6.56) and Q =

[
q1ψ1 0 0

0 q2ψ2 0
0 0 q2ψ3

]
. We fix ψi = 10−4, i = 1, 2, 3 and

L = 2π. Numerical experiments show that, for Ro ∈ (0, 1), the maximum Reynolds

number for which ISS certificates could be found ReISS and ReC coincide. The limiting

cases Ro = 0, 1 will be discussed in the next example.

6.4.2 Plane Couette Flow

We consider the flow of viscous fluid between two parallel plates, where the gap between

the plates is much smaller than the length of the plates as illustrated in Figure 6.4.

We consider no-slip boundary conditions u|1y=−1 = 0 and u(t, y, z) = u(t, y, z + L).

The Poincaré constant is then given by C = π2
√
L2+22 .

We are interested in finding estimates of the critical Reynolds number ReC using the

following Lyapunov functional

V (u) =

∫ L

0

∫ 1

−1

[
ux
uy
uz

]′ [ qx 0 0
0 qy 0
0 0 qz

] [
ux
uy
uz

]
dydz, (6.57)

with qy = qz, which is the same as Lyapunov functional (6.18) considering invariance with

respect to x.

For stability analysis, we need to check inequality (6.41) according to Item I in Corol-
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lary 6.3.1. For this flow (m = x, j = y, i = z), we have

M =


qxC
Re

qx
2

0

qx
2

qyC

Re
0

0 0 qyC

Re

 ≥ 0 (6.58)

This is a LMI feasibility problem with decision variables qx, qy > 0.

To find estimates of ReC , applying Schur complement [19, p. 650] to (6.58), we have

qxC

Re
−
(qx

2

)2
(
Re

qyC

)
≥ 0,

qyC

Re
≥ 0,

which yields the inequality
qy
qx
≥
(
Re

2C

)2

. (6.59)

This implies that the Couette flow subject to constant perturbations in the streamwise di-

rection is stable for all Re. Hence, for Couette flow, ReC = ∞ obtained using Lyapunov

functional (6.18) coincides with linear stability limit ReL =∞ [101].

Let L = π. For energy growth analysis, we solve optimization problem (6.50) with

M given by (6.58). The results are depicted in Figure 6.5. For small Reynolds numbers

γ2 ∝ O(Re), whereas for larger Reynolds numbers γ2 ∝ O(Re3). Therefore, it can be

inferred that γ2 = c0Re+ c1Re
3 with c0, c1 > 0. This is consistent with the results by [15]

where the maximum energy growth of steamwise constant (nonlinear) Couette flow was

calculated analytically.

For induced L2-norm analysis, we apply inequality (6.43) which for this particular flow

is given by the following LMI
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Figure 6.5: Upper bounds on the maximum energy growth for Couette flow in terms of
Reynolds numbers.

N =



− qx
2

0 0

M − I3×3 0 − qy
2

0

0 0 − qy
2

− qx
2

0 0 η2
x 0 0

0 − qy
2

0 0 η2
y 0

0 0 − qy
2

0 0 η2
z


≥ 0

with M as in (6.58).

The obtained upper-bounds on the induced L2-norm for Couette flow are given in Fig-

ure 6.6. Since the flow is stable for all Reynolds numbers, the induced L2-norms are mono-

tone with Reynolds number. The obtained upper-bounds depicted in Figure 6.6 imply η2
x =

a0Re
2 +a1Re

3, η2
y = b0Re

2 + b1Re
4 and η2

z = c0Re
2 + c1Re

4 with a0, a1, b0, b1, c0, c1 > 0.

The obtained upper-bounds depicted in Figure 6.6 can be compared with Corollary D.0.2

(see Appendix D), wherein it was demonstrated that η2
x = f0Re

2, η2
y = g0Re

2 + g1Re
4 and
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Figure 6.6: Upper bounds on induced L2-norms for perturbation velocities of Couette flow
for different Reynolds numbers.

η2
z = h0Re

2 + h1Re
4 for the linearized Couette flow with f0, g0, g1, h0, h1 > 0.

In order to check the ISS property, we check inequality (6.44) from Corollary 6.3.1 for

the Couette flow under study, i.e.,

Z =



− qx
2

0 0

M −W 0 − qy
2

0

0 0 − qy
2

− qx
2

0 0 σx 0 0

0 − qy
2

0 0 σy 0

0 0 − qy
2

0 0 σz


≥ 0

with M given in (6.58) and W =

[
qxψx 0 0

0 qyψy 0
0 0 qyψz

]
. We fix ψi = 10−4, i = x, y, z and

L = 2π. In this case, we obtain ReISS = 316 and ReC = ∞. The quantity ReISS = 316

is the closest estimate to the empirical Reynolds numberRe ≈ 350 obtained by [120] above

which transition to turbulence is observed. In this sense, it turns out that the ReISS gives
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Figure 6.7: The perturbation flow structures with maximum ISS amplification atRe = 316.

lower bounds on the Reynolds number above which transition occurs.

In order to understand this ISS result, we carried out numerical experiments to ob-

tain the flow structures that receive maximum amplification in the sense of ISS. The ex-

periments were undertaken for the linearized Navier-Stokes equation through the Orr-

Somerfield equations. Appendix C discusses the details of these numerical experiments.

Notice that these results are based on solving LMIs that ensure ISS for the ODE space-

discretizations of the Orr-Somerfield equations. This is carried out by making a 50 × 50

grid on the wave number space kx − kz (kx, kz ∈ [0, 150]) and running the LMIs for each

point in the grid. Then, the wave numbers corresponding to the maximum ISS ampli-

fication are selected (especially, we are interested to find kx corresponding to maximum

amplification, as this is the streamwise direction) and the corresponding flow structure is

simulated. It turns out that the maximum ISS amplification corresponds to the streamwise

constant case kx = 0. Figure 6.7 illustrates the flow structures that receive maximum ISS

amplification at Re = 316.

It is also worth mentioning that certificates for ISS of the linearized Navier-Stokes

equation, as discussed in Appendix C, could be constructed for all Reynolds numbers,

which is in contrast to the nonlinear case.
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Figure 6.8: Schematic of the plane Poiseuille flow geometry.

6.4.3 Plane Poiseuille Flow

Similar to the plane Couette flow, we consider the flow of viscous fluid between two parallel

plates, where the gap between the plates is much smaller than the length of the plates.

Unlike the plane Couette flow, the plates are stationary and the flow is induced by a pressure

gradient in the flow direction, flowing from the region of higher pressure to one of lower

pressure. The flow geometry is depicted in Figure 6.8.

The domain Ω is defined as Ω = {(y, z) | −1 < y < 1, 0 < z < L}. The flow

perturbations are assumed constant in the streamwise direction x. The base flow is given

by U = Um(y)−→e x = (1 − y2)−→e x and P = 1 − 4x
Re

. We consider no-slip boundary

conditions u|1y=−1 = 0 and u(t, y, z) = u(t, y, z+L). The Poincaré constant is then given

by C = π2
√
L2+22 . We study the stability and the input-output properties of the flow using

the storage functional (6.57).

In order to check stability, we need to verify inequality (6.41) according to Item I in
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Corollary 6.3.1. For this flow (m = x, j = y, i = z), we have

M(y) =


qxC
Re

−yqx 0

−yqx qyC

Re
0

0 0 qyC

Re

 ≥ 0, y ∈ (−1, 1). (6.60)

Using the Schur complement, we have

qxC

Re
− (yqx)

2 Re

qyy
≥ 0,

qyC

Re
≥ 0, y ∈ (−1, 1).

That is, qy
qx
≥
(
yRe
C

)2
for all y ∈ (−1, 1) which is satisfied whenever

qy
qx
≥
(
Re

C

)2

. (6.61)

Hence, the plane Poiseuille flow with streamwise constant perturbations is stable for all

Reynolds numbers. Note that it is a known result that the Plane Poiseuille flow becomes

unstable to perturbations that are streamwise dependent or three-dimensional perturba-

tions [105]. Hence, the streamwise constant formulation does not provide a good estimate

for stability Reynolds number in this case.

To find upper bounds on maximum energy growth for the plane Poiseuille flow, we

solve the optimization problem (6.50) with M as given in (6.60). The results are illustrated

in Figure 6.9. This implies that the maximum energy amplification is described by γ2 =

b0Re+ b1Re
2, with b0, b1 > 0.

For induced L2-norm analysis, we use inequality (6.43) which for this flow is given by

the following LMI
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Figure 6.9: Upper bounds on the maximum energy growth for plane Poiseuille flow in
terms of Reynolds numbers.
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Poiseuille flow for different Reynolds numbers.
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N =



− qx
2

0 0

M(y)− I3×3 0 − qy
2

0

0 0 − qy
2

− qx
2

0 0 η2
x 0 0

0 − qy
2

0 0 η2
y 0

0 0 − qy
2

0 0 η2
z


≥ 0, y ∈ (−1, 1),

with M as in (6.60). The obtained upper-bounds on the induced L2-norm for the plane

Poiseuille flow are also given in Figure 6.10. Since this flow is stable for all Reynolds

numbers (as shown above), the induced L2-norms increases with Reynolds number. Form

Figure 6.10 it can be inferred that η2
x = a0Re

2 + a1Re
3, η2

y = b0Re
2.2 + b1Re

4 and η2
z =

c0Re
2 + c1Re

4 with a0, a1, b0, b1, c0, c1 > 0.

For ISS analysis, we check inequality (6.44) from Corollary 6.3.1 for plane Poiseuille

flow, i.e.,

Z =



− qx
2

0 0

M(y)−W 0 − qy
2

0

0 0 − qy
2

− qx
2

0 0 σx(y) 0 0

0 − qy
2

0 0 σy(y) 0

0 0 − qy
2

0 0 σz(y)


≥ 0, y ∈ (−1, 1)

with M given in (6.60) and W =

[
qxψx 0 0

0 qyψy 0
0 0 qyψz

]
. We fix ψi = 10−4, i = x, y, z and

L = 2π. In this case, we obtain ReISS = 1855. The quantity ReISS = 1855 can be

compared with the empirical Reynolds number at the onset of turbulence Re ≈ 2000 as

discussed in [43]. Once again, we infer thatReISS provides a lower bound for the Reynolds

number for which transition to turbulence occurs.

Analogous to the plane Couette flow, we undertook numerical experiments to find the

flow structures subject to maximum ISS amplification. Again, we found that the maximum

amplification corresponds to the streamwise constant case kx = 0. Figure 6.11 illustrates
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Figure 6.11: The perturbation flow structures with maximum ISS amplification at Re =
1855.
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Figure 6.12: Schematic of the Hagen-Poiseuille flow geometry.

the flow structures that receive maximum ISS amplification at Re = 1855.

6.4.4 Hagen-Poiseuille Flow

We consider the flow of viscous fluid driven by the pressure gradient in a pipe as illustrated

in Figure 6.12. The domain Ω is defined as Ω = {(r, θ) | 0 < r < 1, 0 < θ < 2π}.

The flow is invariant in the streamwise direction z. It was shown by [104] that streamwise

constant perturbations are subject to maximum background energy amplification in pipe

flow. The base flow is given by U = Um(r)−→e z = (1− r2)−→e z and P = 1− 4z
Re

. Then, the

perturbation dynamics is given by (6.33) with F ≡ 0 and Um(r) = 1 − r2. Moreover, we

assume no-slip boundary conditions u|r=1 = 0.

We consider the Lyapunov functional given in (6.34). Then, substituting Um and F
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in (6.52) yields

Mc(r) =


qzC
Re

−rqz 0

−rqz qrC
Re

0

0 0 qθC
Re

 ≥ 0, r ∈ (0, 1). (6.62)

Applying the Schur complement, we obtain the following conditions for exponential sta-

bility
qzC

Re
− (rqz)

2Re

qrr
≥ 0,

qθC

Re
≥ 0, r ∈ (0, 1).

That is, qr
qz
≥
(
rRe
C

)2 for all r ∈ (0, 1) which is satisfied whenever

qr
qz
≥
(
Re

C

)2

. (6.63)

Hence, given qr and qz satisfying (6.63), the Hagen-Poiseuille flow with streamwise con-

stant perturbations is exponentially stable for all Reynolds numbers, i.e., the linear stability

limit coincides with nonlinear stability limit.

In order to find upper bounds on maximum energy growth for Hagen-Poiseuille flow,

we solve optimization problem (6.50) withM = Mc(r) as (6.62). The results are illustrated

in Figure 6.13. The results imply that the maximum energy amplification is described by

γ2 = b0Re+ b1Re
2, with b0, b1 > 0.

This tallies with the numerical experiments of [104] on the transient growth based on

the linearized Navier-Stokes equations for the pipe flow.

Considering Mc(r) as in (6.62), inequality (6.54) becomes

Nc(r) =



− qz
2

0 0

Mc(r)− I3×3 0 − qr
2

0

0 0 − qθ
2

− qz
2

0 0 η2
z 0 0

0 − qr
2

0 0 η2
r 0

0 0 − qθ
2

0 0 η2
θ


≥ 0, r ∈ (0, 1). (6.64)
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Figure 6.13: Upper bounds on the maximum energy growth for Hagen-Poiseuille Flow
flow in terms of Reynolds numbers.
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Minimizing η2
z , η2

r and η2
θ subject to the above inequality provides upper-bounds on the

induced L2-norms for pipe flow. The results are depicted in Figure 6.14. The interesting

conclusion from the figure is that the perturbations are amplified as η2
z = a0Re

2 + a1Re
3,

η2
θ = b0Re

2 + b1Re
4, and η2

r = c0Re
2 + c1Re

4 with a0, a1, b0, b1, c0, c1 > 0.

Note that [59] just considered channel flows which does not include pipe flow.

For ISS analysis, the following polynomial matrix inequality

Zc(r) =



− qz
2

0 0

Mc(r)−Wc 0 − qr
2

0

0 0 − qθ
2

− qz
2

0 0 σz(r) 0 0

0 − qr
2

0 0 σr(r) 0

0 0 − qθ
2

0 0 σθ(r)


≥ 0, r ∈ (0, 1), (6.65)

where Wc =

[
ψzqz 0 0

0 ψrqr 0
0 0 ψθqθ

]
was checked. The maximum Reynolds number for which

certificates of ISS could be found was ReISS = 1614 using degree 10 polynomials in

σz(r), σθ(r) and σr(r). Remarkably, this is a lower bound to the Reynolds number for

which transition to turbulence was observed empirically by [87], i.e., Re ≈ 1800.

6.5 Conclusions

We studied stability and input-output properties of fluid flows with constant perturbations

in one of the directions using dissipation inequalities. We proposed a class of appropriate

Lyapunov/storage functionals for such flows that lead to a quadratic representation of the

integrands of the dissipation inequalities. Conditions based on matrix inequalities were

given for streamwise constant flow perturbations. When the base flow was given by a poly-

nomial of spatial coordinates and the flow geometry was described by a semi-algebraic set,

the matrix inequalities were checked using convex optimization. For illustration purposes,

we applied the proposed method to study several flows.
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Chapter 7

Conclusions and Future Work

In this dissertation, we proposed methods based on convex optimization for the analysis of

systems described by PDEs. The analysis problems we considered included stability, input-

state/output properties, safety verification and bounding output functionals of PDEs. We

applied the stability and input-state/output analysis tools to problems from fluid mechanics.

Before closing this dissertation, we provide a summary of the contents and present some

directions for future research.

7.1 Summary

After a brief review of some mathematical preliminaries in Chapter 2, in Chapter 3, we

proposed a method for solving integral inequalities with polynomial integrands using con-

vex optimization. The method relied on a quadratic representation of the integrands and

an application of Fundamental Theorem of Calculus to account for boundary conditions.

We then used this method to check the integral inequalities encountered in the Lyapunov

stability analysis of PDEs.

In Chapter 4, we studied the input-state/output properties of PDEs based on formulat-

ing a set of dissipation inequalities. In this respect, we considered passivity, reachability,

induced norms, and ISS. The formulation based on dissipation inequalities allowed us to
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investigate the properties of interconnections of PDE-PDE systems and PDE-ODE sys-

tems. In the case of polynomial data, we solved the dissipation inequalities using convex

optimization.

In Chapter 5, we considered the safety verification problem of PDEs. The proposed

analysis required the construction of barrier functionals satisfying two integral inequali-

ties along the solutions of a PDE. We further demonstrated that the problem of bounding

output functionals of PDEs can be addressed using barrier functionals. In the case of poly-

nomial data, we solved the associated integral inequalities and we constructed the barrier

functionals using SOS programming.

In Chapter 6, we applied the methods for stability analysis and input-output analysis

proposed in Chapters 3 and 4, respectively, to the input-output analysis problems of fluid

flows. Particularly, we studied flows with constant perturbations in one of the directions.

A suitable structure of the Lyapunov/storage functional led to a set of matrix inequalities

that can be checked via convex optimization in the case of polynomial base flow and semi-

algebraic flow geometry. The method was applied to the input-output analysis problems of

several channel and pipe flows.

7.2 Future Research Directions

In terms of the convex method to check integral inequalities, here, we treated integral in-

equalities defined over one dimensional domains. An extension has been made to integrals

over domains of two spatial dimensions, of which [127] reports some preliminary results.

In the two dimensional setting, we can apply Green’s Theorem to obtain a set of quadratic

representations of a given integral inequality. Then, the positivity of the surface integral

can be analyzed by checking the positivity of the matrices in the quadratic representations.

In [127], we detailed the method for unit square domains. Other domain topologies, e.g.

the unit circle, are also worth studying. In addition, the extension to higher dimensions,
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say three spatial dimensions, can be made by applying Stokes’ Theorem.

In this dissertation, the function bases we selected were polynomials. This choice made

it possible to derive SOS programs to verify integral inequalities. However, this choice may

not be the best. In the time-delay systems literature, the Legendre basis functions were used

in [107] to formulate LMI conditions for the stability tests of distributed time-delay sys-

tems using a complete Lyapunov-Krasovskii functional. In the context of PDEs, in [36], the

authors propose an SDP-based method based on the Legendre basis functions to optimize a

linear objective function subject to a quadratic integral inequality. The method has shown

to be effective in handling PDE analysis problems [34, 35]. These contributions raise the

question of whether exploiting other sequences of orthogonal functions such as trigono-

metric functions, Bernstein, Chebyshev or Laguerre polynomials would potentially lead to

more efficient computational tools. In this regard, the case of Chebyshev polynomials is

particularly interesting due to their convergence properties for function approximation [17],

e.g. in spectral methods [122].

In terms of dissipation inequalities, more complicated interconnections can be consid-

ered. Furthermore, optimal controller synthesis algorithms for PDEs can be studied, where

both in-domain and boundary actuation can be considered. In this regard, controller syn-

thesis methods for PDEs based on convex optimization were recently proposed in [9, 38].

In particular, [38] considers the following Lyapunov functional structure

V (u) =

∫ 1

0

M(x)u2 dx+

∫ 1

0

∫ 1

0

u′(t, x)K(x, ζ)u(t, ζ) dxdζ,

where

K(x, ζ) =


K1(x, ζ) ζ ≤ x,

K2(x, ζ) ζ > x

with polynomials M : (0, 1) → R, K1 : (0, 1)2 → R and K2 : (0, 1)2 → R. Such K is

referred to as a semi-separable kernel. The latter structure has been shown to be efficacious
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in designing stabilizing controllers for linear PDEs. Yet, the extension to nonlinear PDEs

is still an open problem.

In terms of barrier functionals, prospective research can consider bounding functionals

of the states of nonlinear stochastic differential equations (SDEs). A preliminary result in

this direction has been accepted for presentation at the 55th IEEE Conference on Decision

and Control [1], where a method for safety verification of backward-in-time PDEs is devel-

oped and used to bound state functionals of SDEs thanks to the Feynman-Kac PDE. This

method also has direct applications to optimal control of stochastic systems, wherein the

Hamilton-Jacobi-Bellman equation can be used.

In the case of applications to fluid mechanics, an interesting problem for future research

is identifying the regions of attraction for different flow configurations. For example, in the

case of Taylor-Couette flow, after decomposing the Navier-Stokes equation about different

flow regimes, one can search for estimates of the region of attraction inside which each

flow regime is stable.

In addition, input-output amplification mechanisms of turbulent flows is also an intrigu-

ing prospective research direction. In this regard, [29, 98] consider a non-polynomial model

for turbulent mean velocity profiles and turbulent eddy viscosities. Polynomial approxima-

tions (of high degrees) of such nonlinear models fit the formulation given in Chapter 6.

Then, the method discussed in Chapter 6 can be used to study the input-output properties.

Lastly, more general Lyapunov/storage functional structures can be considered. More

specifically, given the nonlinear dynamics of the Navier-Stokes equations, one can consider

the following class of Lyapunov/storage functionals

V (u) =

∫
Ω

u

u2


′

Q

u

u2

 dΩ.

However, a convex formulation using the above structure is not clear at the moment.
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1

1 This book has come to an end, but much still remains of what it aims to tell / For even in one hundred
books, one cannot describe the state of he who is athirst [for knowledge] – Sa’di
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Appendix A

Well-posedness of PDEs

In this dissertation, we consider the following (abstract) differential equations


∂tu = Fu+ G d, t > 0,

u(0) = u0 ∈ U0 ⊂ Dom(F ),

(A.1)

where F and G are operators. To see how this abstract representation can be used to

analyze PDEs, let us go through the following example.

Example A.0.1 Consider a heated metal bar of unit length, in which the two ends of the

bar are insulated so that there is no heat flux. The heat distribution over the rod is described

by the following PDE


∂tu(t, x) = ∂2

xu(t, x) + d(t, x) t ≥ 0, x ∈ Ω = (0, 1)

u(0, x) = u0(x),

∂xu(t, 0) = ∂xu(t, 1) = 0.

(A.2)

where u(t, x) denotes the temperature at position x and time t, u0(x) the initial temperature

distribution, and d(t, x) the heat source. In order to use the abstract form (A.1), we take

U = L2(Ω) as the state space and the trajectory segment u(t, ·) = {u(t, x), x ∈ Ω} as the
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state. Now it suffices to define

Fh = ∂2
xh, (A.3)

G h = h, (A.4)

Dom(F ) =
{
h ∈ L2(Ω) | h ∈ H2(Ω) and ∂xh(0) = ∂xh(1) = 0

}
(A.5)

and u0 ∈ L2(Ω) as the initial condition.

A.1 Linear PDEs

In the case when F and G are linear operators, the well-posedness problem of (A.1) is tied

to F being the generator of a strongly continuous semigroup denoted C0-Semigroup [26,

Chapter 2.1]. Let L(U) be the space of bounded linear maps1 on a Hilbert space U .

Definition A.1.1 (C0-Semigroup) A C0-semigroup is an operator valued function T (t)

from R≥0 to L(U) that satisfies the following properties

• T (t+ r) = T (t)T (r), ∀t, s ∈ R≥0,

• T (0) = I ,

• limt→0+ ‖T (t)u0 − u0‖ → 0, ∀u0 ∈ U .

Another important concept that we need in order to define the solutions to (A.1) is the

infinitesimal generator.
1Let X and Y be two normed vector spaces. The operator S : X → Y is a bounded linear operator, if

there exists some M > 0 such that for all v ∈ X

‖S v‖Y ≤M‖v‖X .

The smallest such M is called the operator norm of S .
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Definition A.1.2 (Infinitesimal Generator) The infinitesimal generator F of aC0-semigroup

on a Hilbert space U is defined by

Fu = lim
t→0+

T (t)u− u
t

.

In principle, the above definition gives a way of calculating the infinitesimal generator

of a C0-semigroup, but this is rarely used as it is rather difficult to apply.

Example A.1.3 (Linear Systems) Let A ∈ L(Rn×n), e.g. the matrix A ∈ Rn×n and con-

sider the following well-known C0-semigroup for linear systems

T (t) = eAt.

Then, the infinitesimal generator of T (t) is described as

Fu = Au.

Although in the above example finding the infinitesimal generator seems trivial to ob-

tain, such characterization is not straightforward in general. In this respect, the Hille-Yosida

theorem [114, Theorem 3.4.1], [26, Theorem 2.1.12] provides necessary and sufficient con-

ditions for such generators. To state the latter theorem, we need the resolvent operator,

R(λ,F) = (λI −F )−1 with I denoting the identity operator, of the infinitesimal gener-

ator F of a C0-semigroup. Lemma 2.1.11 in [26] demonstrates that R(λ,F) is indeed the

Laplace transform of the semigroup T (t).

Theorem A.1.4 (Hille-Yosida Theorem) A necessary and sufficient condition for a closed,

densely defined, linear operator F on a Hilbert space U to be the infinitesimal generator

of a C0-semigroup is that there exist real numbers M and w, such that for all real α > w,
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α ∈ ρ(F ), the resolvent set of F , and

‖ (R(α,F ))r ‖ ≤ M

(α− w)r
, ∀r ≥ 1,

In this case,

‖T (t)‖ ≤Mewt.

The Hille-Yosida Theorem concedes that every C0-semigroup satisfies ‖T (t)‖ ≤Mewt

for some M and w. The reader may have noted that in the case when w < 0, F is

the infinitesimal generator of an exponentially stable semigroup T (t). Another special

and important case is when M = 1 (quasicontraction semigroup). Then, the semigroup

e−wtT (t) satisfies ‖T (t)‖ ≤ 1. Such semigroups are called contraction semigroups.

Definition A.1.5 (Contraction Semigroup) T (t) is a contraction semigroup if it is a C0-

semigroup that satisfies an estimate ‖T (t)‖ ≤ 1 for all t ≥ 0.

In addition, the Lumer-Phillips theorem [114, Theorem 3.4.5],[69],[125, Theorem 3.8.6]

presents conditions for the generator of a strongly continuous contraction semigroup that

are easier to verify based on checking whether the operator is dissipative.

The next result gives sufficient conditions that resemble Lyapunov inequalities and can

be used to show that the generator of a contraction semigroup exits or, in other words, that

the operator is dissipative (when w = 0).

Corollary A.1.6 Sufficient conditions for a closed, densely defined operator on a Hilbert

space to be the infinitesimal generator of a C0-semigroup satisfying ‖T (t)‖ ≤ ewt are:

Re 〈Fu, u〉 ≤ w‖u‖2, u ∈ Dom(F ),

Re 〈F ∗u, u〉 ≤ w‖u‖2, u ∈ Dom(F∗),

where Re(·) denotes the real part.
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Let us illustrate this by an example.

Example A.1.7 Let U = H2(Ω;R) for an open and connected domain Ω ⊆ Rn and let

F = ∆, the Laplace operator, defined on the dense subspace of compactly supported

smooth functions on Ω. Then, using integration by parts,

〈u,∆u〉 =

∫
Ω

u(x)∆u(x) dx = −
∫

Ω

∣∣∇u(x)
∣∣2 dx = −‖∇u‖2

L2(Ω;R) ≤ 0,

so the Laplacian is a dissipative operator.

Theorem 2.1.10 in [26] states that if an infinitesimal generator F exists for aC0-semigroup

T (t), then the uncontrolled (d = 0) version of our system (A.1) has a solution with the

properties of a dynamical system.

Theorem A.1.8 Let T (t) be a C0-semigroup on a Hilbert space U with infinitesimal gen-

erator F . Then, the following hold

• For u0 ∈ Dom(F ), T (t)u0 ∈ Dom(F ), ∀t ≥ 0,

• ∂t (T (t)u0) = FT (t)u0 = T (t)Fu0 for u0 ∈ Dom(F ), t > 0,

• u(t) = T (t)u0 = u0 +
∫ t

0
T (t)Fu0 dt for Dom(F ),

• F is a closed linear operator.

Next, we present the first definition for a solution to (A.1). Subsequently, we will see

that such solutions exist, if an infinitesimal generator exits. Let z = G d.

Definition A.1.9 (Classical Solution, Definition 3.1.1 in [26]) Consider equation (A.1) on

the Hilbert space U . Let z ∈ C1([0, r];U). The function u(t) is a classical solution of (A.1)

on [0, r] if u(t) ∈ C1([0, r];U), u(t) ∈ Dom(F ) for all t ∈ [0, r] and u(t) satisfies (A.1)

for all t ∈ [0, r]. The function u(t) is a classical solution on R≥0, if u(t) is a classical

solution on [0, r] for every r ∈ R≥0.
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Theorem A.1.10 (Theorem 3.1.3 in [26]) If F is the infinitesimal generator of aC0-semigroup

T (t) on a Hilbert space U , z ∈ C1([0, T ];U) and u0 ∈ Dom(F ), then

u(t) = T (t)u0 +

∫ t

0

T (t− s)z(s) ds (A.6)

is continuously differentiable on [0, T ] and it is the unique classical solution of (A.1).

For control applications, in general, we do not wish to assume that u ∈ C1([0, r];U).

So we introduce the following weaker concept of a solution of (A.1).

Definition A.1.11 (Mild Solution, Definition 3.1.4 in [26]) If u ∈ Lp([0, r];U) for a p ≥

1 and u0 ∈ U , then we call (A.6) a mild solution of (A.1) on [0, r].

It can be shown that a weak solution is continuous on the domain [0, r]. In fact, this

mild solution is the same as the concept of a weak solution 2 used in the study of PDEs.

Theorem A.1.12 (Theorem 3.1.7 in [26]) For every u0 ∈ U and every z ∈ Lp([0, r);U)

there exists a unique weak solution of (A.1) that is the mild solution of (A.1).

A.2 Nonlinear PDEs

Set G = 0. If F is a nonlinear dissipative operator, [72, Chapter 4] describes the conditions

for which F generates a semigroup of contractions.

Definition A.2.1 A nonlinear semi-group on a compact normed space U is a family of

maps {T (t) | U → U , t ≥ t0} such that
2For z ∈ Lp([0, r);U) for a p ≥ 1. We call u a weak solution of (A.1) on [0, r), if the following holds:

• u(t) is continuous on [0, r],

• For all g ∈ C([0, r];U),∫ r

0

〈u(t), g(t)〉 dt+
∫ r

0

〈z(t), s(t)〉 dt+ 〈u0, s(0)〉 = 0,

where s(t) = −
∫ r
t
T ∗(τ − t)g(τ) dτ , where T ∗ is the adjoint of the operator T .

We call u a weak solution of (A.1) on R≥0, if it is a weak solution on [0, r) for every r ≥ 0.
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• for each t ≥ t0, T (t) is continuous from U to U ,

• for each u ∈ U , the mapping t→ T (t)u is continuous,

• T (0) is the identity on U ,

• T (t)(T (τ)u) = T (t+ τ)u for all u ∈ U and all t, τ ≥ 0.

Theorem A.2.2 (Theorem 4.2. in [72]) Let F be a dissipative operator that satisfies the

following condition

Dom(F ) ⊂ Ran(I − λF ), ∀λ > 0, (A.7)

where Ran(A ) =
⋃
u∈Dom(A ) A u denotes the range of the operator A , then there is a

semigroup of contractions {T (t), t ≥ 0} on Dom(F ) that satisfies

I) for every u ∈ R ∩Dom(F ), where R = ∩λ>0R(I − λF ),

T (t)u = lim
λ→0+

(I − λF )−
t
λu, t ≥ 0,

where convergence is uniform on bounded some intervals of R≥0.

II) ‖T (t)u− T (s)u‖ ≤ ‖Fu‖|t− s|, u ∈ Dom(F ), t, s ≥ 0.

At this point, we are ready to state a wellposedness result for nonlinear semigroups.

Theorem A.2.3 (Theorem 4.10. in [72]) Let F be a closed dissipative operator satisfy-

ing (A.7) and let {T (t), t ≥ 0} be a semigroup of contractions on Dom(F ) as in Theo-

rem A.2.2 and let u ∈ Dom(F ). If T (t)u is differentiable a.e. t ≥ 0, then T (t)u : R≥0 →

U is a unique solution to (A.1).
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Appendix B

Converting Functionals to The Full

Integral Form

In this appendix, we describe methods to convert functionals defined over subsets of the

domain into the full integral form.

B.1 Boundaries

Consider functional (5.15) with h2 = 0, h1 ∈ C1[x] and x ∈ {0, 1}, i.e.

y(t) = h (t, 0, Dαu(t, 0)) , x0 ∈ ∂Ω. (B.1)

For some p ∈ C1(Ω) satisfying p(1) = 0, we obtain

p(0)h (t, 0, Dαu(t, 0)) = −
∫ 1

0

∂x(ph) dx. (B.2)

Therefore,

y(t) = h (t, 0, Dαu(t, 0)) =
−1

p(0)

∫ 1

0

((∂xp)h+ p(∂xh)) dx. (B.3)
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In addition, if the functional is defined on the boundary x = 1, assuming p(0) = 0, we

obtain

y(t) = h (t, 1, Dαu(t, 1)) =
1

p(1)

∫ 1

0

((∂xp)h+ p(∂xh)) dx. (B.4)

Notice that, by fixing the values of p(0) and p(1) in (B.3) and (B.4), respectively, we can

use equations (B.3) and (B.4) to study functionals evaluated at the boundaries using integral

inequalities in the full integral form.

B.2 Single Points Inside the Domain

At this point, consider functional (5.15) with h2 = 0, i.e.

y(t) = h
(
t, x0, D

βu(t, x0)
)
, x0 ∈ Ω. (B.5)

We split the domain into two subsets Ω1 = (0, x0] and Ω2 = [x0, 1). Then, PDE (5.10) can

be represented by the following coupled PDEs

∂tu =


F (t, x,Dαu), x ∈ Ω1

F (t, x,Dαu), x ∈ Ω2

subject toDα−1u(t, x0) = Dα−1u(t, x0) and (5.12). Using appropriate change of variables,

we obtain 
∂tu1 = F1(t, x,Dαu1), x ∈ Ω

∂tu2 = F2(t, x,Dαu2), x ∈ Ω
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subject to 1
xα−1

0

Dα−1u1(t, 1) = 1
(1−x0)α−1D

α−1u2(t, 0)1 and

B

 1
xα−1

0

Dα−1u2(t, 1)

1
(1−x0)α−1D

α−1u1(t, 0)

 = 0,

where B is as in (5.12), F1 = F (t, x, 1

xβ0
Dβu1), and F2 = F (t, x, 1

(1−x0)β
Dβu2). Then,

functional (B.5) can be changed to either of the following

y(t) = h

(
t, x0,

1

xβ0
Dβu1(t, 1)

)
,

y(t) = h

(
t, x0,

1

(1− x0)β
Dβu2(t, 0)

)
,

and the method proposed for points at the boundaries described in previous subsection B.1.

B.3 Subsets Inside the Domain

Consider functional (5.15) with g1 = 0, i.e.

y(t) =

∫
Ω̃

g
(
t, x,Dβu(t, x)

)
dx, (B.6)

where Ω̃ = (x1, x2) ⊂ Ω. Similar to the previous section, we split the domain into three

subsets Ω1 = (0, x1], Ω2 = [x1, x2), and Ω3 = [x2, 1). Then, PDE (5.10) can be rewritten

as

∂tu =


F (t, x,Dαu), x ∈ Ω1

F (t, x,Dαu), x ∈ Ω2

F (t, x,Dαu), x ∈ Ω3,

1 To simplify the notation, we define

1

xα−10

Dα−1u =

(
u,

1

x0
∂xu, . . . ,

1

xα−10

∂α−1x u

)′
.
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subject to Dα−1u(t, x1) = Dα−1u(t, x1), Dα−1u(t, x2) = Dα−1u(t, x2), and (5.12). With

appropriate change of variables, we have


∂tu1 = F1(t, x,Dαu1), x ∈ Ω

∂tu2 = F2(t, x,Dαu2), x ∈ Ω

∂tu3 = F3(t, x,Dαu3), x ∈ Ω

subject to 1
(x1)α−1D

α−1u1(t, 1) = 1
(x2−x1)α−1D

α−1u2(t, 0) and 1
(x2−x1)α−1D

α−1u2(t, 1) =

1
(1−x2)α−1D

α−1u3(t, 0) in addition to

B

 1
(1−x2)α−1D

α−1u3(t, 1)

1
(x1)α−1D

α−1u1(t, 0)

 = 0,

where B is the same matrix as the one in (5.12),

F1 = F (t, x,
1

xβ1
Dβu1), F2 = F (t, x,

1

(x2 − x1)β
Dβu2),

and F3 = F (t, x, 1
(1−x2)β

Dβu3). Finally, functional (B.6) can be converted to the following

full integral form which is suitable for the integral inequalities

y(t) = (x2 − x1)

∫ 1

0

h

(
t, x,

1

(x2 − x1)β
Dβu2(t, x)

)
dx.
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Appendix C

Details of Numerical Experiments for

Flow Structures

In the following, we describe the details of the numerical experiments carried out to obtain

the flow structures for the plane Couette flow and the plane Poiseuille flow. We begin by

describing the linearized Navier-Stokes equation and its corresponding discretization [37].

The non-dimensional linearized Navier-Stokes equations governing the evolution of

disturbances in steady mean flow with streamwise velocity varying only in the cross-stream

direction are 
(∂t + U∂x) ∆v − ∂2

yU∂xv = 1
Re

∆∆v,

(∂t + U∂x) η + ∂yU∂zv = 1
Re

∆η,

(C.1)

where U(y) is the mean streamwise velocity component, v is the cross-section perturbation

velocity, η := ∂zu− ∂xw, the cross-stream component of perturbation vorticity (z denotes

the spanwise direction). Velocity has been non-dimensionalized by U0, the maximum ve-

locity in the channel; length has been non-dimensionalized by L, the width of the channel.

The Reynolds number is defined as Re := U0L
ν

, where ν is the kinematic viscosity. Consid-

ering no-slip boundary conditions at y = ±1, we have v = ∂yv = η = 0 at y = ±1. Recall

that for the plane Couette flow U = y, and for the plane Poiseuille flow U = 1− y2.

165



Consider a single Fourier component

v = v̂eikxx+ikzz, (C.2)

η = η̂eikxx+ikzz. (C.3)

Physical variables being identified with the real part of these complex form. The field

equations can be written in the compact form

∂t

v̂
η̂

 =

L 0

C S


v̂
η̂

 , (C.4)

in which the Orr-Sommerfield operator L , the Square operator S , and the coupling oper-

ator C are defined as

L = ∆−1

(
−ikxU∆ + ikx∂

2
yU +

∆∆

Re

)
, (C.5)

S = −ikxU +
∆

Re
, (C.6)

C = −iky∂yU, (C.7)

with K2 = k2
x + k2

y and ∆ = ∂2
y −K2. Moreover, we have

û =
−i
K2

(kyη̂ − kx∂yv̂) , (C.8)

ŵ =
i

K2
(kxη̂ + ky∂yv̂) . (C.9)

For numerical simulations of the Orr-Somerfield equation (C.1), we consider its discrete

equivalent for an N -level discretization (over space)

ζ =

[
v̂1 · · · v̂N η̂1 · · · η̂N

]′
,
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and the initial value problem (C.1) can be rewritten as

ζ̇ = A ζ, (C.10)

in which the linear dynamical operator, A , is the discretized form of [ L 0
C S ]. This means

that the infinite dimensional dynamical system (C.1), is approximated as a finite dimen-

sional dynamical systems.

The discretized operator A was calculated using the codes available in the Appendix A

of [105] using Chebyshev discretization. For both flows, we considered N = 50. Then,

the state-space form (C.10) is a linear system that has to be studied. In the following, we

obtain LMI conditions to check ISS of a linear system.

Now, consider the following linear dynamical system

ζ̇ = A ζ +Bd, t > 0, (C.11)

where ζ(0) = ζ0, ζ ∈ R2N , d ∈ R2N and B = I2N×2N . This is the perturbed version of

the discrete system (C.10). We are interested in studying the ISS of (C.10). That is, given

d ∈ L∞, we have the following inequality for all ζ0 ∈ R2N

‖ζ(t)‖2 ≤ β (t, ||ζ0||2) + σ
(
‖d‖L∞

[0,t)

)
, t > 0 (C.12)

where β ∈ KL, σ ∈ K and ‖ζ(t)‖2 is the Euclidean 2-norm, i.e., ‖ζ(t)‖2 =
√
ζ ′ζ .

Theorem C.0.1 Consider system (C.11). If there exists an ISS-Lyapunov function V (ζ)

and a positive semidefinite function S, c1, c2 ∈ K, and a positive scalar ψ satisfying

c1(‖ζ‖2) ≤ V (ζ) ≤ c2(‖ζ‖2), (C.13)
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and

∂tV (ζ) ≤ −ψV (ζ) + S(d), (C.14)

then solutions of (C.11) satisfy estimate (C.12) with β(·) = c−1
1

(
2e−ψtc2(·)

)
and σ(·) =

c−1
1

(
2
ψ
S(·)

)
.

Proof: Multiplying both sides of (C.14) by eψt, gives

eψt∂tV (ζ) ≤ −eψtψV (ζ) + eψtS(d)

which implies d
dt

(
eψtV (ζ)

)
≤ eψtS(d). Integrating both sides of the latter inequality from

0 to t yields

eψtV (ζ(t))− V (ζ0) ≤
∫ t

0

eψτS(d(τ)) dτ ≤
(∫ t

0

eψt dτ

)(
sup
τ∈[0,t)

S (d(τ))

)
.

where, in the last inequality, we applied the Hölder inequality. Then,

eψtV (ζ(t))− V (ζ0) ≤
(
eψt − 1

ψ

)(
sup
τ∈[0,t)

S (d(τ))

)
≤ eψt

ψ
sup
τ∈[0,t)

S (d(τ)) .

Dividing both sides of the last inequality above by the non-zero term eψt and re-arranging

the terms gives

V (ζ(t)) ≤ e−ψtV (ζ0) +
1

ψ
sup
τ∈[0,t)

S (d(τ)) .

Applying the bounds in (C.13), we obtain

c1(‖ζ‖2) ≤ e−ψtc2(‖ζ0‖2) +
1

ψ
sup
τ∈[0,t)

S (d(τ)) .

Since c1 ∈ K, its inverse exists and belongs to K. Thus,

‖ζ‖2 ≤ c−1
1

(
e−ψtc2(‖ζ0‖2) +

1

ψ
sup
τ∈[0,t)

S (d(τ))

)
,

168



which can be further modified to

‖ζ‖2 ≤ c−1
1

(
2e−ψtc2(‖ζ0‖2)

)
+ c−1

1

(
2

ψ
sup
τ∈[0,t)

S (d(τ))

)
.

Noting that S is positive semidefinite, we have

‖ζ‖2 ≤ c−1
1

(
2e−ψtc2(‖ζ0‖2)

)
+ c−1

1

(
2

ψ
S
(
‖d‖L∞

[0,t)

))
.

�

The following corollary gives sufficient conditions based on linear matrix inequalities

to check the conditions of Theorem C.0.1.

Corollary C.0.2 Consider system (C.11). If there exist symmetric matrices P and S, and

a positive scalar ψ such that

P > 0, S > 0 (C.15)

and A ′P + PA + ψP B′P

PB −S

 ≤ 0, (C.16)

then the solutions to (C.11) satisfy (C.12) with for β(·) =
(

2λM (P )
λm(P )

e−ψt(·)
) 1

2
and σ(·) =(

2λM (S)
ψλm(P )

(·)
) 1

2
.

Proof: This is a result of applying Theorem C.0.1 by considering V (ζ) = ζ ′Pζ and

S(d) = d′Sd. �

In order to the find the maximum ISS amplification, we solve the following optimization
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problem

minimizeP,S (λ1 − λ2)

subject to

S ≤ λ1I, P > λ2I, (C.15), and (C.16). (C.17)

Then, the system satisfies inequality (C.12) with β(·) =
(

2λM (P )
λ2

e−ψt(·)
) 1

2
and σ(·) =(

2λ1

ψλ2
(·)
) 1

2
. The upper-bound on the maximum ISS amplification is thus

(
2λ1

ψλ2
(·)
) 1

2
. For the

wave numbers that correspond to the maximum ISS amplification, we obtain the direction

in which maximum amplification is attained. To this end, we carry out a singular-value

decomposition of P (since P is symmetric the singular values and eigenvalues coincide)

and we obtain the eigenvector in A that corresponds to the maximum singular value.
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Appendix D

Induced L2
[0,∞),Ω

-norms for the

Linearized 2D/3C Model

In [58], the authors calculated componentwise H∞-norms for the linearized 2D/3C model

by finding the maximum singular values. This result is described as follows.

Theorem D.0.1 (Thoerem 11, p. 93 in [58]) For any streamwise constant channel flows

with nominal velocity U(y), the H∞ norms of operators Hrs(ω, kz, Re) that maps ds into

ur, {r = x, y, z; s = x, y, z}, are given by


‖Hxx‖∞(kz) ‖Hxy‖∞(kz) ‖Hxz‖∞(kz)

‖Hyx‖∞(kz) ‖Hyy‖∞(kz) ‖Hyz‖∞(kz)

‖Hzx‖∞(kz) ‖Hzy‖∞(kz) ‖Hzz‖∞(kz)

 =


hxx(kz)Re hxy(kz)Re

2 hxz(kz)Re
2

0 hyy(kz)Re hyz(kz)Re

0 hzy(kz)Re hzz(kz)Re

 ,
(D.1)

where kz represent the wavenumber in xz (spanwise direction).

We are interested in studying the induced L2-norms from inputs dx, dy, dz to u =

(ux, uy, uz)
′. The following corollary provides the induced norms of interest.

Corollary D.0.2 For any streamwise constant channel flows with nominal velocity U(y),
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we have
‖u‖2

L2
[0,∞),Ω

‖dx‖2
L2

[0,∞),Ω

= f1(kz)Re
2, (D.2)

‖u‖2
L2

[0,∞),Ω

‖dy‖2
L2

[0,∞),Ω

= f2(kz)Re
2 + g2(kz)Re

4, (D.3)

‖u‖2
L2

[0,∞),Ω

‖dz‖2
L2

[0,∞),Ω

= f3(kz)Re
2 + g3(kz)Re

4. (D.4)

Proof: From (D.1), we infer that


‖ux‖L2

[0,∞),Ω

‖uy‖L2
[0,∞),Ω

‖uz‖L2
[0,∞),Ω

 =


hxx(kz)Re hxy(kz)Re

2 hxz(kz)Re
2

0 hyy(kz)Re hyz(kz)Re

0 hzy(kz)Re hzz(kz)Re



‖dx‖L2

[0,∞),Ω

‖dy‖L2
[0,∞),Ω

‖dz‖L2
[0,∞),Ω

 . (D.5)

Thus, we have


‖ux‖L2

[0,∞),Ω

‖uy‖L2
[0,∞),Ω

‖uz‖L2
[0,∞),Ω

 =


hxx(kz)Re‖dx‖L2

[0,∞),Ω
+ hxy(kz)Re

2‖dy‖L2
[0,∞),Ω

+ hxz(kz)Re
2‖dz‖L2

[0,∞),Ω

hyy(kz)Re‖dy‖L2
[0,∞),Ω

+ hyz(kz)Re‖dz‖L2
[0,∞),Ω

hzy(kz)Re‖dy‖L2
[0,∞),Ω

+ hzz(kz)Re‖dz‖L2
[0,∞),Ω

 .
(D.6)
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Then, multiplying both sides of the above equality by the transpose of vector

 ‖ux‖L2
[0,∞),Ω

‖uy‖L2
[0,∞),Ω

‖uz‖L2
[0,∞),Ω


gives


‖ux‖L2

[0,∞),Ω

‖uy‖L2
[0,∞),Ω

‖uz‖L2
[0,∞),Ω


′ 
‖ux‖L2

[0,∞),Ω

‖uy‖L2
[0,∞),Ω

‖uz‖L2
[0,∞),Ω



=


hxx(kz)Re‖dx‖L2

[0,∞),Ω
+ hxy(kz)Re

2‖dy‖L2
[0,∞),Ω

+ hxz(kz)Re
2‖dz‖L2

[0,∞),Ω

hyy(kz)Re‖dy‖L2
[0,∞),Ω

+ hyz(kz)Re‖dz‖L2
[0,∞),Ω

hzy(kz)Re‖dy‖L2
[0,∞),Ω

+ hzz(kz)Re‖dz‖L2
[0,∞),Ω


′


hxx(kz)Re‖dx‖L2

[0,∞),Ω
+ hxy(kz)Re

2‖dy‖L2
[0,∞),Ω

+ hxz(kz)Re
2‖dz‖L2

[0,∞),Ω

hyy(kz)Re‖dy‖L2
[0,∞),Ω

+ hyz(kz)Re‖dz‖L2
[0,∞),Ω

hzy(kz)Re‖dy‖L2
[0,∞),Ω

+ hzz(kz)Re‖dz‖L2
[0,∞),Ω

 . (D.7)

That is,

‖u‖2
L2

[0,∞),Ω︷ ︸︸ ︷
‖ux‖2

L2
[0,∞),Ω

+ ‖uy‖2
L2

[0,∞),Ω
+ ‖uz‖2

L2
[0,∞),Ω

=
(
hxx(kz)Re‖dx‖L2

[0,∞),Ω
+ hxy(kz)Re

2‖dy‖L2
[0,∞),Ω

+ hxz(kz)Re
2‖dz‖L2

[0,∞),Ω

)2

+
(
hyy(kz)Re‖dy‖L2

[0,∞),Ω
+ hyz(kz)Re‖dz‖L2

[0,∞),Ω

)2

+
(
hzy(kz)Re‖dy‖L2

[0,∞),Ω
+ hzz(kz)Re‖dz‖L2

[0,∞),Ω

)2

. (D.8)

In order to see the influence of each dx on ‖u‖2
L2

[0,∞),Ω
, we set dy = dz = 0 obtaining

‖u‖2
L2

[0,∞),Ω
= h2

xx(kz)Re
2‖dx‖2

L2
[0,∞),Ω

.
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It suffices to set f1(kz) = h2
xx(kz). Similarly, we have

‖u‖2
L2

[0,∞),Ω
= h2

xy(kz)Re
4‖dy‖2

L2
[0,∞),Ω

+
(
h2
yy(kz) + h2

zy(kz)
)
Re2‖dy‖2

L2
[0,∞),Ω

,

‖u‖2
L2

[0,∞),Ω
= h2

xz(kz)Re
4‖dz‖2

L2
[0,∞),Ω

+
(
h2
yz(kz) + h2

zz(kz)
)
Re2‖dz‖2

L2
[0,∞),Ω

,

wherein f2(kz) = h2
yy(kz) + h2

zy(kz), g2(kz) = h2
xy(kz), f3(kz) = h2

yz(kz) + h2
zz(kz) and

g3(kz) = h2
xz(kz). �
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[67] W. Liu and M. Krstić. Stability enhancement by boundary control in the Kuramoto–

Sivashinsky equation. Nonlinear Analysis: Theory, Methods & Applications,

43(4):485–507, 2001.
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[90] I. Pólik and T. Terlaky. A survey of the S-Lemma. SIAM Review, 49(3):371–418,

2007.

[91] S. Prajna. Barrier certificates for nonlinear model validation. Automatica, 42(1):117

– 126, 2006.

[92] S. Prajna and A. Jadbabaie. Methods for safety verification of time-delay systems.

In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC

’05. 44th IEEE Conference on, pages 4348–4353, Dec 2005.

[93] S. Prajna, A Jadbabaie, and G.J. Pappas. A framework for worst-case and stochastic

safety verification using barrier certificates. Automatic Control, IEEE Transactions

on, 52(8):1415–1428, Aug 2007.

[94] S. Prajna, A. Papachristodoulou, and F. Wu. Nonlinear control synthesis by sum of

squares optimization: a Lyapunov-based approach. In 5th Asian Control Conference,

volume 1, pages 157–165, 2004.

[95] S. Prajna and A. Rantzer. On the necessity of barrier certificates. In Proceedings of

the 16th IFAC World Congress, 2005, pages 742–742, 2005.

[96] Stephen Prajna, Antonis Papachristodoulou, and Fen Wu. Nonlinear control syn-

thesis by sum of squares optimization: A Lyapunov-based approach. In Control

Conference, 2004. 5th Asian, volume 1, pages 157–165. IEEE, 2004.

[97] C. Prieur and F. Mazenc. ISS-Lyapunov functions for time-varying hyperbolic sys-

tems of balance laws. Mathematics of Signals, Controls and Systems, 24:111–134,

2012.
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