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Abstract— We propose convex controller synthesis algorithms
for a class of stochastic differential equations (SDEs) with
persistent noise. This includes SDEs in which the noise does
not vanish at the equilibria of the system. Our performance
criterion is Noise-to-State Stability (NSS) in the moments,
which is a generalization of the input-to-state stability (ISS)
for SDEs. We formulate synthesis algorithms that, in addition
to guaranteeing asymptotic convergence in the case of zero
input noise, ensure that an upper bound on the effect of input
noise (defined by the Frobenius norm of the noise covariance) is
minimized. In the case of linear SDEs, the algorithm is in terms
of linear matrix inequalities and, in the case of polynomial data,
the method is based on polynomial optimization. The method
is illustrated by examples.

I. INTRODUCTION
For a large class of systems, the complexity and/or the

uncertainty in dynamics is modeled by stochastic differential
equations (SDEs). Examples are the dynamics of biochemi-
cal reactions [1] and the fluctuations of the stock prices [2].
Similar to deterministic systems, Lyapunov methods can be
used to study different stability and convergence properties
(e.g. almost sure stability and stability in probability) of
SDEs [3], [4].

Similarly important is the controller synthesis problem
of stochastic systems. Among the early attempts based on
solutions of algebraic Riccati equations, one can cite [5], [6].
Inspired by the advances in methods using control Lyapunov
functions [7] and constructive Lyapunov stabilization [8]
for nonlinear deterministic systems, researchers turned to
controller synthesis algorithms for SDEs using stochastic
control Lyapunov functions [9].

In the past decade, the developments in polynomial opti-
mization and sum-of-squares (SOS) programming [10] have
provided algorithmic methods to construct Lyapunov func-
tions [11] for deterministic systems with polynomial vector
fields. In [12], [13], convex controller synthesis algorithms
were formulated using polynomial Lyapunov functions. Syn-
thesis methods with rational Lyapunov functions and higher
degree Lyapunov functions were proposed in [14] and [15],
respectively. A method based on quadratic stabilization was
proposed in [16] to design saturating and un-saturating
nonlinear feedback control laws for polynomial systems.
Controller synthesis with performance bounds was also con-
sidered in [12] and [17] and controller synthesis for discon-
tinuous dynamical systems was studied in [18]. In the context
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of stochastic systems, [19] and [20] are the only attempts
using SOS programming to synthesize controllers, where the
authors use a logarithmic transformation to obtain a linear
version of the Hamilton-Jacobi-Bellman (HJB) equation.

However, these methods do not apply to SDEs subject to
persistent noise, where the non-decaying noise exists even
at the equilibria of the system. For this class of systems,
persistent noise precludes stochastic stability. In addition,
notions such as input-to-state stability (ISS) [21], which
establish bounds on the state in terms of the supremum
norm of a persistent input, can not be applied. This stems
from the fact that, for a stochastic input, the Itô integral
has infinite variations, while the integral for an input in ISS
has finite variation. To overcome this technical difficulty,
we require noise-to-state stability (NSS) [22] and/or noise-
to-state stability in the pth-moment (pth-NSS) [23], which
are generalizations of ISS to stochastic systems. Yet, no
algorithmic method was proposed in [22] and [23] to verify
(or to design controllers ensuring) NSS or pth-NSS for a
given system.

In this paper, we present a set of linear matrix inequalities
(LMIs) and SOS conditions that, if satisfied, ensure that
an underlying system is NSS or pth-NSS. Equipped with
these conditions, we formulate convex controller synthesis
algorithms that not only ensure stochastic asymptotic stabil-
ity for the system without input noise, but also ensure that
the moments of the system remain bounded for sufficiently
large time. We propose optimization problems that minimize
bounds on the effect of input noise covariance. For linear
SDEs, our method provides sufficient conditions in terms of
LMIs, and NSS is ensured in the mean-square sense [24] or
the 2nd-moment. For polynomial SDEs, the method is based
on SOS programming and guarantees the boundedness of
higher moments. We illustrate the proposed method by two
examples.

The rest of the paper is organized as follows. The next
section considers some background material on SDEs and
NSS. In Section III, we present LMI conditions to synthesize
2nd-NSS controllers. In Section IV, we propose a method
based on polynomial optimization to design NSS control
laws. The proposed methodology is illustrated by two exam-
ples in Section V. Finally, Section VI concludes the paper
and gives directions for future research.

Notation:
The n-dimensional Euclidean space is denoted by Rn and

the set of nonnegative reals by R≥0. The n-dimensional set
of positive integers is denoted by Nn, and the n-dimensional
space of non-negative integers is denoted by Nn≥0. The
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notation M ′ denotes the transpose of matrix M , a symmetric
n × n matrix is denoted Sn, and Tr{M} is the trace of
the square matrix M . A domain Ω is an open subset of
Rn with C1 boundary ∂Ω. The space of k-times continuous
differentiable functions defined on Ω is denoted by Ck(Ω)
and the space of Ck(Ω) functions mapping to a set Γ is
denoted Ck(Ω → Γ). The space of q-th power integrable
functions u defined over Ω is denoted Lq(Ω) endowed with
the norm ‖u‖Lq(Ω) =

(∫
Ω
|u|q dx

) 1
q , for 1 ≤ q < ∞, and

‖u‖L∞(Ω) = supx∈Ω |u|. For a function f ∈ C1(Ω) and
g ∈ C2(Ω), ∇f denotes the gradient vector and ∇2g denotes
the Hessian matrix. For a random variable X , E[X] denotes
its expected value. For a symmetric matrix function S(x),
we define λm(S) = infx∈Ω |λmin(S(x))|, where λmin :
Sn → R is the minimum eigenvalue function. Similarly,
λM (S) = supx∈Ω |λmax(S(x))|, where λmax : Sn → R
is the maximum eigenvalue function. For a real matrix A,
‖A‖F =

√
Tr(AA′) denotes its Frobenius norm. For two

functions f and g, f ◦ g is the composition of f and g. For
a set S, Cd(S) denotes the cardinality of S or the number
of elements in S. For an m × n matrix A, the notation Aj
denotes the jth row of A. A continuous, strictly increasing,
function k : [0, a) → R≥0, satisfying k(0) = 0, belongs to
class K. If a =∞ and limx→∞ k(x) =∞, k belongs to class
K∞. A function k(s, t) belongs to class KL, if k(s, ·) ∈ K
and limt→∞ k(·, t) = 0.

II. PRELIMINARIES AND DEFINITIONS

Let (Γ,J , {Jt}t≥0,P) be a complete and right-continuous
filtered probability space, where Γ is a sample space,
{Jt}t≥0 with Jt ⊆ J for each t is a filteration of the
σ-algebra J , and P is the probability measure function.
Consider the following SDE

dx(t) = f(x(t), t) dt+G(x(t), t)Σ(t) dW (t) (1)

where x(t) ∈ Rn denotes the state. The initial condition is
given by x(0) = x0 with probability 1 for some x0 ∈ Rn.
The functions f : Rn × [0,∞) → Rn, G : Rn × [0,∞) →
Rn×q and Σ : [0,∞) → Rq×m are measurable. The
functions f and G correspond to the system dynamics,
whereas Σ determines a linear transformation of the m-
dimensional Brownian motion {W (t)}t≥0, so that at time
t ≥ 0 the stochastic input to the system is the process
{Σ(t)W (t)}t≥0, with covariance

∫ t
0

Σ(τ)Σ′(τ) dτ .
An Rn-valued random process {x(t)}t≥0 is a solution

of (1) with initial condition x0, if
• it is continuous with probability 1, {Jt}-adapted, and

satisfies x(0) = x0 with probability 1,
• the process {f(x(t), t)}t≥0 and {G(x(t), t)}t≥0 belong

to L1([0,∞) → Rn) and L2([0,∞) → Rn×m),
respectively, and

• Equation (1) holds for every t ≥ 0 with probability 1.
The following assumptions ensure the existence and

uniqueness of the solutions to (1).
Assumption 1 ([3], Theorem 3.6, p. 14): Let Σ be locally

essentially bounded. In addition, for all T > 0 and n ≥ 1,

there exists K(T, n) > 0 such that, for almost every t ∈
[0, T ] and all x, y ∈ Rn with max{‖x‖2, ‖y‖2} ≤ n,

max
{
‖f(x, t)− f(y, t)‖22, ‖G(x, t)−G(y, t)‖2F

}
≤ K(T, n)‖x− y‖22. (2)

Finally, for all T > 0, there exists C(T ) > 0 such that
for almost every t ∈ [0, T ] and all x, y ∈ Rn, x′f(x, t) +
1
2‖G(x, t)‖2F ≤ C(T )(1 + ‖x‖22).

In this paper, we study noise-to-state stability in the p-th
moment (pth-NSS), which is defined next.

Definition 1 (pth-NSS): System (1) is pth-NSS, if there
exists β ∈ KL and θ ∈ K such that

E [|x(t)|p] ≤ β (|x0|p, t) + θ

(
ess sup

τ∈[0,t)

‖Σ(τ)‖F

)
,

∀t ≥ 0, ∀x0 ∈ Rn. (3)
Note that the Frobenius norm of Σ(t) is a measure of the

size of the noise as it is related to the infinitesimal covariance
Σ(t)Σ′(t).

In order to provide computational tools for the analysis of
system (1), we use NSS Lyapunov functions as defined next.

Definition 2 (NSS Lyapunov Function): A function V ∈
C2(Rn → R≥0) is an NSS Lyapunov function, if there exists
W ∈ C(Rn → R≥0), σ ∈ K and concave η ∈ K∞ such that

V (x) ≤ η (W (x)) , ∀x ∈ Rn, (4)

and the following dissipation inequality is satisfied

L[V ](x) ≤ −W (x) + σ (‖Σ(t)‖F ) , ∀(x, t) ∈ Rn ×R≥0,
(5)

where

L[V ](x) = (∇V )
′
f(x, t)

+
1

2
Tr

(
G′(x, t)Σ′(t)∇2V Σ(t)G(x, t)

)
. (6)

is the Itô derivative of V .
The next result generalizes Theorem 4.1 in [22] and will

be used in the sequel.
Theorem 2 ([23], Theorem 3.6): Under Assumption 1

and further assuming that Σ(t) being continuous, let V be
an NSS Lyapunov function for (1). Then, it holds that

E [V (x(t))] ≤ β̃ (V (x0), t) + η

(
2σ( sup

τ∈[0,t)

‖Σ(τ)‖F )

)
,

∀t ≥ 0, (7)

where β̃ ∈ KL is the solution to the Cauchy problem

ẏ(t) = −1

2
η−1 (y(t)) , y(0) = y0. (8)

Note that the NSS property (7) ensures that (since β̃ ∈
KL) the system is asymptotically stable in the absence of
input noise. Moreover, as t→∞, inequality (7) reduces to

lim
t→∞

E [V (x(t))] ≤ η̃

(
sup

τ∈[0,∞)

‖Σ(τ)‖F

)
, ∀t ≥ 0, (9)
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where η̃ = η ◦ 2 ◦ σ. Thus, if the supremum of ‖Σ(τ)‖F is
bounded, then the moments of the system remain bounded,
as well. This parallels the notion of ISS for deterministic
systems.

However, to study pth-NSS, we require the existence of
strong NSS Lyapunov functions.

Definition 3 (pth-NSS Lyapunov Functions): A function
V ∈ C2(Rn → R≥0) is a strong NSS Lyapunov function in
probability for system (1), if V is an NSS Lyapunov function
and, in addition, there exists p > 0 and α1, α2 ∈ K such that

α1 (|x|p) ≤ V (x) ≤ α2 (|x|p) , ∀x ∈ Rn. (10)

If α1 is convex, then V is a pth-NSS Lyapunov function with
respect to Ω.

The next Theorem establishes that the existence of an NSS
Lyapunov function implies NSS.

Theorem 3 ([23], Corollary 3.9): Under Assumption 1,
and further assuming that Σ is continuous, if V : C2(Rn →
R≥0) is a pth-NSS Lyapunov function for system (1), then
the system is pth-NSS with β and θ as given below

β(r, s) = α−1
1

(
2β̄(α2(rp), s

)
, θ(r) = α−1

1 (2η(2σ(r))) .
In the following sections, we present conditions based on

semi-definite programming to synthesize controllers with a
guaranteed bound.

III. 2ND-NOISE-TO-STATE STABILIZING CONTROLLER
SYNTHESIS FOR LINEAR SDES

Consider the following linear SDE

dx = (Ax+Bu) dt+GΣ(t) dW (t), (11)

where x(0) = x0 ∈ Rn with probability 1. The matrices A ∈
Rn, B ∈ Rn×nu , G ∈ Rn×q and Σ : R≥0 → Rq×m. The
following theorem presents LMI conditions which ensure
2nd-NSS of solutions to system (11).

Theorem 4: Consider system (11) with u ≡ 0. Assume
Σ(t) is continuous. If there exist symmetric matrices P ∈
Rn×n, H ∈ Rn×n and F ∈ Rm×m such that

P > 0, F > 0, H > 0, (12)

A′P + PA+H ≤ 0, (13)

and
G′PG− F ≤ 0, (14)

then the solutions to (11) are 2nd-NSS and satisfy

E
[
|x(t)|2

]
≤ β

(
|x0|2, t

)
+ θ

(
sup
τ∈[0,t)

‖Σ(τ)‖F

)
,

∀t ≥ 0, ∀x0 ∈ Rn. (15)

with

β(r, s) =
2λM (P )λm(H)|r|2

λm(P )
e

−s
2λM (P ) , θ(r) =

λM (F )

λm(P )
|r|2

(16)
Proof: Let V (x) = x′Px be the candidate 2nd-NSS

Lyapunov function. From P > 0 in (12), it follows that

λm(P )|x|2 ≤ V (x) ≤ λM (P )|x|2.

Thus, inequality (10) is satisfied with α1(·) = λm(P ) × (·)
being convex and α2(·) = λM (P )× (·). Calculating the Itô
derivative of V yields

L[V ](x) = x′(A′P + PA)x+
1

2
Tr

(
Σ′G′(P + P )GΣ

)
= x′(A′P + PA)x+ Tr

(
Σ′G′PGΣ

)
(17)

From inequality (13) and (14), we can infer that

L[V ](x) = x′(A′P + PA)x+ Tr

(
Σ′G′PGΣ

)
≤ −x′Hx+ Tr

(
Σ(t)F 2Σ(t)′

)
.

Then, we have

L[V ](x) ≤ −λm(H)|x|2 + λM (F )‖Σ(t)‖2F .

Thus, (5) holds with W (r) = λm(H)r2 and σ(r) =
λ2
M (F )r2. Finally, from Theorem 3, it follows that the

system is 2nd-NSS and satisfies (15) with functions β and θ
as given in (16).

At this point, we study the existence of a 2nd-NSS
controller in feedback form u = Kx.

Corollary 1: Consider system (11). Assume Σ(t) is con-
tinuous. Given 0 ≤ α ≤ 1 and ε > 0, if there exist
symmetric matrices L ∈ Rnu×nu , P ∈ Rn×n H ∈ Rn×n
and F ∈ Rm×m that solve the following minimization
problem

minimize λ1 − αλ2

subject to
λ1 > 0, λ2 > 0, (18)

F > 0, F − λ1I ≤ 0, λ2I − P ≤ 0, εI −H ≤ 0 (19)[
A′P + PA+H PB

B′P 1
2L

]
≤ 0, (20)

and (14), then the control law u = Kx = −L−1B′Px
renders the system 2nd-NSS as in (15) with

β(r, t) =
2ελM (P )|r|2

λm(P )
e

−t
2λM (P ) , θ(r) =

λ1

λ2
|r|2.

Proof: Substituting u = −L−1B′Px in (11) yields the
closed loop dynamics

dx =
(
A−BL−1B′P

)
x dt+GΣ(t) dB(ω, t).

Defining Ac = A − BL−1B′P and replacing A with Ac
in (13), we obtain

(A−BL−1B′)′P + P (A−BL−1B′) +H ≤ 0.

That is,

A′P + PA+H − 2PBL−1B′P ≤ 0.

Applying Schur’s complement to (20), we see that inequal-
ity (13) is satisfied for the closed loop system. Moreover,
inequality (19) assures that (12) is also satisfied. Then, with
(14) satisfied as well, the system is 2nd-NSS according to
Theorem 4 and satisfies (15) with θ(r) and β(r, t) as in (16).
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To minimize θ(r), we need to minimize λM (F )
λm(P ) . From (19)

and the fact that λ1 > 0 and F > 0, we have

λM (F ) ≤ λ1, λm(P ) ≥ λ2.

Then, λM (F )
λm(P ) ≤

λ1

λ2
. Thus, minimizing λ1 while maximizing

λ2, minimizes λM (F )
λm(P ) . This completes the proof.

IV. NOISE-TO-STATE STABILIZING CONTROLLER
SYNTHESIS FOR POLYNOMIAL SDES

Consider the following polynomial SDE

dx = (A(x)ζ(x) +B(x)u) dt+G(x)Σ(t) dW (t) (21)

with x(0) = x0 ∈ Rn with probability 1, ζ : Rn → Rq is
a vector of monomials in x, A : Rn → Rn×q , B : Rn →
Rn×nu , G : Rn → Rn×s, and Σ : R≥0 → Rs×m.

Remark 1: Note that for a given polynomial system the
representation (21) is not unique, i.e., A(x) and B(x) can
be different monomial factorization ζ(x). Lemma 1 in [15]
describes a method to find possible A(x) and B(x) matrices
for a given ζ(x).

The next theorem gives conditions under which sys-
tem (21) without control u ≡ 0 is NSS.

Theorem 5: Consider system (21) with u ≡ 0. Let As-
sumption 1 hold. If there exist polynomial matrices P :
Rn → Sq , H : Rn → Rq×q and F : Rn → Rs×s such
that

P (x) > 0, F (x) ≥ 0, H(x) > 0, (22)

A′(x) (∇ζ(x))
′
P (x) + P (x) (∇ζ(x))A(x)

+

n∑
j=1

∂P (x)

∂xj
(A(x)ζ(x))j +H(x) ≤ 0, (23)

and
G′(x)Ψ(x)G(x)− F (x) ≤ 0, (24)

where

Ψ(x) = 2Ξ1(x) + 2 (∇ζ(x))
′
P (x) (∇ζ(x)) + Ξ2(x),

Ξ1(x) =

(
∂ (∇ζ(x))

′

∂x1
P (x)ζ(x),

· · · , ζ ′(x)P (x)
∂ (∇ζ(x))

∂x1

)
∈ Rn×n,

Ξ2(x) = (∇ζ(x))
′
Q(x) + S(x),

Q(x) =

(
∂P (x)

∂x1
ζ(x), · · · , ∂P (x)

∂xn
ζ(x)

)
∈ Rq×n,

S(x) =

(
∂Q′(x)

∂x1
ζ(x), · · · , ∂Q

′(x)

∂xn
ζ(x)

)
∈ Rn×n,

∂Q′(x)

∂xi
=

(
∂2P (x)

∂x1∂xi
+
∂P (x)

∂x1

∂ζ(x)

∂x1
,

· · · , ∂
2P (x)

∂x1∂xn
+
∂P (x)

∂xn

∂ζ(x)

∂xn

)
,

then the system is NSS and satisfies

E
[
|ζ(x)|2

]
≤ λM (P (x))λm(H(x))|ζ(x0)|2

λm(P (x))
e

−t
2λM (P (x))

+
λM (F (x))

λm(P (x))

(
sup
τ∈[0,t)

‖Σ(τ)‖F

)2

, ∀t ≥ 0. (25)

Proof: This is a result of applying Theorem 2 with
NSS-Lyapunov function candidate V (x) = ζ ′(x)Pζ(x). The
detailed proof is omitted here.

Remark 2: As stated in Remark 1, we can find a cor-
responding A(x) for fixed ζ(x). This allows us to find
bounds on higher moments of a given system. For instance,
for a two state stochastic system, if ζ(x) = [x2

1 x2
2]′ ,

then inequality (25) provides bounds on the 4th-moment as
follows

E
[
|x|4
]
≤ λM (P (x))λm(H(x))|x0|4

λm(P (x))
e

−t
2λM (P (x))

+
λM (F (x))

λm(P (x))

(
sup
τ∈[0,t)

‖Σ(τ)‖F

)2

, ∀t ≥ 0. (26)

The next result hinges on Theorem 5 which provides
a controller synthesis algorithm ensuring NSS. Let x̄ =
(xj1 , . . . , xjm)′, where (j1, . . . , jm) ∈ J is the set of indices
corresponding to the zero row of B(x).

Corollary 2: Consider system (21). Let Assumption 1
hold. Given 0 < α ≤ 1 and ε > 0, if there exist matrices L :
Rn → Rnu×nu , H : Rn → Rq×q and P : RCd(J) → Rq×q ,
and F : Rn → Rs×s such that the minimization problem is
feasible

minimize λ1 − αλ2

subject to
λ1 > 0, λ2 > 0, (27)

F (x) > 0, F (x)− λ1I ≤ 0, (28)
λ2I − P (x̄) ≤ 0, εI −H(x) ≤ 0, (29)[

Z(X) +H(x) P (x̄) (∇ζ(x))B(x)

B′(x) (∇ζ(x))
′
P (x̄) 1

2L(x)

]
≤ 0, (30)

where

Z(x) = A′(x) (∇ζ(x))
′
P (x̄) + P (x̄) (∇ζ(x))A(x)

+

n∑
j=1

∂P (x̄)

∂xj
(A(x)ζ(x))j

and (24), then there exist a control law

u = K(x)ζ(x) = −L−1(x)B′(x) (∇ζ(x))
′
P (x̄)ζ(x),

that renders system (21) NSS satisfying (25) with
λm(H(x)) = ε, λM (F (x)) = λ1 and λm(P (x)) = λ1.

Proof: The proof follows the same lines as the proof
of Theorem 5 and is removed here due to space limitations.
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Fig. 1: The evolution of E[|x(t)|2]. The dashed line illustrates
the bound computed E[|x|2] = 1.8945.

Fig. 2: Phase portrait of ten trajectories of the controlled
system in Example I starting at x(0) = (10,−10)′

V. EXAMPLES

In this section, we illustrate the proposed controller syn-
thesis algorithms using two examples. The associated LMI
problems are solved using YALMIP [25] and the SOS
programs are solved using SOSTOOLS [26].

A. Example I

Consider the linear SDE (11) with

A =

[
4 −1
−1 5

]
, B =

[
5 −1
1 3

]
, G = I, Σ = I.

Note that the open loop system is unstable and ‖Σ‖F = 1.
For α = 0.01 and ε = 10−2, using Corollary 1, we obtain a
controller u = Kx with

K =

[
−0.4643 2.6786
2.6786 2.8929

]
.

The obtained certificates are given as

P =

[
1.3471 0

0 1.3471

]
, H = I, F =

[
2.6278 0

0 2.6278

]
.

Then, λ1

λ2
= 1.8945. This is consistent with the simulation

results as can be seen in Fig. 1 obtained from 50 Monte Carlo
simulations. Fig. 2 shows the phase space of ten trajectories
of the controlled system.
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Fig. 3: The evolution of E[|x(t)|4]. The dahed line illustrates
the bound computed E[|x|4] = 2.8329.
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Fig. 4: Five trajectories of the controlled system in Exam-
ple II starting at x(0) = (−4, 3)′

B. Example II (adapted from [15] with modifications)

Consider stochastic system (21) with

A(x) =

[
x1 1 + x2

5
x2

1 − 1 −x2 − x1x2

]
, B(x) =

[
0
1

]
,

G(x) =

[
0.2 0.25
0.25 0.2

]
, Σ(t) =

[
sin(100πt)
cos(100πt)

]
,

where ζ(x) =
[
x1 x2

]′
. Note that ‖Σ(t)‖F = 1. To control

the convergence of the 4th moment, we need to find A and
B for ζ(x) =

[
x2

1 x2
2

]′
. Following the method in [15], we
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obtain

A(x) =

[
2x1 2 + 2x2

5
2x2

1 − 2 −2x2 − 2x1x2

]
, B(x) =

[
0

2x2

]
.

Based on Corollary 2, for α = 1 and ε = 1, we obtain the
following controller

K(x) =

[ −0.649x2

2840x2
1−44.7x1x2+63.8x1+3710x2−13.6x2+4180

0.818x2

2840x2
1−44.7x1x2+63.8x1+3710x2−13.6x2+4180

]′
,

which yields the bound λ1

λ2
= 2.8329 on the noise covariance.

The rest of the certificates are given as

P =

[
3.8505 −2.6011
−2.6011 3.7793

]
,

H(x) =
[

5.94x2
1−0.434x1x2−6.25x1+13.2x2

2+0.453x2−2.01

−3.09x2
1−3.12x1x2+2.54x1−1.28x2−3.45x2−0.509

−3.09x2
1−3.12x1x2+2.54x1−1.28x2−3.45x2−0.509

−0.118x2
1+5.66x1x2−0.0341x1+0.245x2+6.21x2+5.6

]
,

F (x) =
[

4.33x2
1−0.246x1x2+4.4x2+26.5

0.128x2
1−0.276x1x2+0.149x2

0.128x2
1−0.276x1x2+0.149x2

2

4.39x2
1−0.246x1x2+4.34x2

2+26.5

]
.

Hence, the controlled system satisfies

E
[
|x(t)|4

]
≤ 5.2874|x0|4e

−t
12.8324 + 2.8329, ∀t ≥ 0.

This is consistent with the simulation results as illustrated
in Fig. 3 obtained from 50 Monte Carlo simulations. Fig. 4
depicts five trajectories of the controlled system starting at
x(0) = (−4, 3)′.

VI. CONCLUSIONS

We proposed conditions based on LMIs and SOS program-
ming to verify NSS and/or pth-NSS of linear and polynomial
SDEs. These conditions were used to formulate convex con-
troller synthesis algorithms. The method allows us to synthe-
size controllers that provide bounds on the higher moments
of SDEs subject to persistent noise. Future research will
consider designing optimal or suboptimal control laws for
systems subject to persistent noise and designing controllers
that enlarge a guaranteed region of attraction [27] of an SDE
using SOS programming (see [28] for the deterministic case).
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