
Automatica 66 (2016) 163–171
Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Dissipation inequalities for the analysis of a class of PDEs✩

Mohamadreza Ahmadi 1, Giorgio Valmorbida, Antonis Papachristodoulou
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

a r t i c l e i n f o

Article history:
Received 9 December 2014
Received in revised form
22 September 2015
Accepted 15 November 2015
Available online 23 January 2016

Keywords:
Distributed parameter systems
Convex optimization
Sum-of-squares programming
Dissipation inequalities
Interconnected systems

a b s t r a c t

In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial
differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness,
and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs.
We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability.
For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares
(SOS) programming can be used to compute certificates for each property. Therefore, the solution to
the proposed dissipation inequalities can be obtained via semi-definite programming. The results are
illustrated with examples.
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1. Introduction

A powerful tool in the study of robustness and input-to-
state/output properties of dynamical systems is dissipation in-
equalities (Hill & Moylan, 1976; Willems, 1972). A dissipation
inequality relates a storage function/functional, which character-
izes the internal energy in the system, and a supply rate, which
represents a generalized power supply function. Given a supply
rate, the solution to the dissipation inequality is a storage func-
tion/functional, which according to the supply rate can certify
different system properties such as passivity, induced L2-norm
boundedness, reachability, and ISS. One major advantage of dissi-
pation inequalities is that, in the case of systems consisting of an
interconnection of subsystems, once some property of the subsys-
tems is known in terms of dissipation inequalities, one can infer
properties of the overall system (Van der Schaft, 1996).

For linear systems described by ordinary differential equations
(ODEs), quadratic storage functions of states are shown to be both
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necessary and sufficient solutions to dissipation inequalities with
quadratic supply rates (Trentelman&Willems, 1997). For example,
the Kalman–Yakubovic–Popov lemma (Kalman, 1963) presents
necessary and sufficient conditions to construct quadratic storage
functions certifying the passivity dissipation inequality of linear
ODE systems. These conditions are given in terms of quadratic
expressions, which can be checked computationally via linear
matrix inequalities (LMIs) (Boyd, El Ghaoui, Feron, & Balakrishnan,
1994, Chapter 2). For ODEs with polynomial vector fields, an
approach to construct polynomial storage functions based on
SOS programming has been proposed in Ebenbauer and Allgöwer
(2006). For general nonlinear ODEs, however, the solution to
dissipation inequalities may require ad hoc techniques.

This paper aims at developing dissipation inequalities for sys-
tems defined by partial differential equations (PDEs). For PDEs, the
solution (state) is a function of both space and time. Moreover, the
solution belongs to an infinite-dimensional (function) space, as op-
posed to a Euclidean space in the case of ODEs. Unlike Euclidean
spaces, for function spaces, say Sobolev spaces, different norms
are not equivalent (Evans, 2010). Therefore, stability and input-to-
state/output properties differ fromonenorm to another. Despite all
these complications, PDEs provide a unique modeling paradigm.

In the context of PDEs, solutions to dissipation inequalities have
been proposed recently. For linear time-varying hyperbolic PDEs,
the weighted L2-norm functional was considered as a certificate
for ISS in Prieur and Mazenc (2012). ISS storage functionals were
suggested in Mazenc and Prieur (2011), for semi-linear parabolic
PDEs. In Bribiesca Argomedo, Prieur, Witrant, and Bremond
(2013), ISS of a semi-linear diffusion equation was analyzed
using the weighted L2-norm as the storage functional and a
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control approach was formulated for a model of magnetic flux
profile in tokamak plasma. In this particular case, the calculation
of the storage functional is formulated as the solution of a
differential inequality, which is solved using a numerical method.
More general ISS definitions were presented in Dashkovskiy and
Mironchenko (2013), and a small gain theorem for interconnection
of PDEs was formulated.

However, once a dissipation inequality is formulated for an
input-to-state/output property characterized by a supply rate,
solving the dissipation inequality is difficult in general. In this
paper, we build on the results in Papachristodoulou and Peet
(2006), where the use of SOS programs and computationally
efficient methods for stability analysis of a class of linear
parabolic PDEs were reported. In Valmorbida, Ahmadi, and
Papachristodoulou (in press), we proposed a methodology to
solve integral inequalities involving functions specified by a set
of boundary conditions using SOS optimization cast as semi-
definite programs (SDPs). This includes inequalities encountered
in stability and input–output analysis of PDEs using Lyapunov
functionals and storage functionals (Ahmadi, Valmorbida, &
Papachristodoulou, 2014), respectively.

In this paper, we generalize the results in Ahmadi et al. (2014),
wherein dissipation inequalities for different input-state/output
properties of PDEs in the space of square integrable functions
with in-domain inputs and outputs were studied, and we
present a framework for input-state/output analysis of a class
of well-posed PDEs. Each input-state/output property, namely
passivity, reachability, induced input–output norms and ISS, is
defined in the appropriate Sobolev norms. We consider PDEs
with in-domain inputs and outputs, and inputs and outputs
at the boundaries. Moreover, we study interconnections of
PDE–PDEs with interconnection either at the boundary or over
the domain. In addition, we use a method based on convex
optimization to systematically solve the dissipation inequalities
for PDEs described by polynomials of independent and dependent
variables. The proposed formulations are illustrated by two
examples: the Burgers’ equation with nonlinear forcing, and the
Kuramoto–Sivashinsky equation.

The paper is organized as follows. The notation used and some
preliminary definitions are discussed in the next section. Sections 3
and 4 are concernedwith the dissipation inequalities for PDEswith
in-domain inputs and outputs and PDEs with boundary inputs and
outputs, respectively. Section 5 presents small gain results for the
interconnection of PDEs. Section 6 discusses the computational
formulation for solving the dissipation inequalities using semi-
definite programming. Two examples are given in Section 7 to
illustrate the proposed methods. Finally, Section 8 concludes the
paper and provides directions for future research.

2. Preliminaries

Notation. The n-dimensional Euclidean space, the space of n × n
symmetric real matrices, the identity matrix, the n-dimensional
space of positive integers, and the n-dimensional space of non-
negative integers are denoted by Rn, Sn, I , Nn and Nn

0, respectively.
The domain Ω ⊂ R is a connected, open subset of R, and Ω
is the closure of set Ω . The boundary ∂Ω of set Ω is defined
as Ω \ Ω with \ denoting set subtraction. In this paper, we
consider Ω = (0, 1). Note that any open bounded domain Ω ′

=

(a, b) ⊂ R can be mapped to Ω = (0, 1) by an appropriate
change of variables. The space of k-times continuous differentiable
functions defined on Ω is denoted by Ck(Ω). Alternatively, p ∈

Ck
[x] implies p is k-times continuous differentiable in the variable

x. If p ∈ C1, then ∂xp is used to denote the derivative of p
with respect to variable x, i.e. ∂x :=

∂
∂x . In addition, we adopt
Schwartz’s multi-index notation. For u ∈ (Ck)n, α ∈ Nn
0, define

Dαu :=

u1, ∂xu1, . . . , ∂

α1
x u1, . . . , un, ∂xun, . . . , ∂

αn
x un


, where

(Ck)n is the n-dimensional space of Ck functions. The Sobolev
space of pth power, up to qth derivative integrable functions u
defined overΩ is denotedW

q,p
Ω endowedwith the norm ∥u∥W

q,p
Ω

=
Ω

q
i=0

∂ ixup dx
 1

p , for 1 ≤ p < ∞ and q ∈ {0, 1, 2, . . .},
and ∥u∥W

q,∞
Ω

= maxi=0,...,q

supx∈Ω

∂ ixu, for p = ∞, where | · |

signifies the absolute value. We denote the case p = 2 simply as
the Hilbert space H

q
Ω . For q = 0, we use the notation L

p
Ω for the

Lebesgue space. Also, we use the following notation ∥u∥H
q
[0,T ),Ω

= T
0 ⟨u, u⟩H

q
Ω

dt
 1

2
, where ⟨u, u⟩H

q
Ω

is the inner product in H
q
Ω .

Whenever the spaces can be inferred from the context, we use
Hq instead of H

q
[0,T ),Ω . A continuous, strictly increasing function

k : [0, a) → R≥0, satisfying k(0) = 0, belongs to classK . If a = ∞

and limx→∞ k(x) = ∞, k belongs to class K∞. We recall that for
any class K function, the inverse exists and belongs to class K .
Furthermore, for anypositive a, b > 0 and k ∈ K , we have (Sontag,
1989, Inequality (12))

k(a + b) ≤ k(2a)+ k(2b). (1)

For a symmetric matrix function S(x), we define λ(S) = infx∈Ω
|λmin (S(x)) |, where λmin : Sn

→ R is the minimum eigenvalue
function. Similarly, λ̄(S) = supx∈Ω |λmax (S(x)) |, where λmax :

Sn
→ R is the maximum eigenvalue function.

Definition 1 (Stability in H
q
Ω ). Consider the PDE

∂tu = F(x,Dαu), x ∈ Ω, t > 0. (2)

Letψ(x) be an equilibrium of (2), satisfying F(x,Dαψ) = 0, x ∈ Ω ,
and u(0, x) = u0(x). Then, ψ(x) is
• stable in H

q
Ω , if for any ε > 0, ∃δ = δ(ε) > 0 such that for all

t ≥ 0

∥u0 − ψ∥H
q
Ω
< δ ⇒ ∥u − ψ∥H

q
Ω
< ε,

• asymptotically stable in H
q
Ω , if it is stable and ∃δ > 0 such that

∥u0 − ψ∥H
q
Ω
< δ ⇒ lim

t→∞
∥u − ψ∥H

q
Ω

= 0,

• exponentially stable in H
q
Ω , if there exists a scalar λ > 0, such

that for all t ≥ 0

∥u − ψ∥
2
H

q
Ω

≤ ∥u0 − ψ∥
2
H

q
Ω

e−λt .

In the sequel, we consider stability to the null solution,
i.e. ψ(x) = 0, ∀x ∈ Ω in Definition 1.

3. PDEs with in-domain inputs and in-domain outputs

In this section, we consider the class of PDE systems described
by
∂tu(t, x) = F (x,Dαuu(t, x),Dαdd(t, x)) ,
y(t, x) = H(x,Dδu), (t, x) ∈ R≥0 ×Ω,

Q

Dαu−1u(t, 1)
Dαu−1u(t, 0)


= 0, Q


Dαd−1d(t, 1)
Dαd−1d(t, 0)


= 0,

(3)

and initial conditions u(0, x) = u0(x), that admit well-posed so-
lutions. The dependent variables u = (u1, u2, . . . , unu)

′, d =

(d1, d2, . . . , dnd)
′, and y = (y1, y2, . . . , yny)

′ (defined over both
space and time) represent states, inputs, and outputs, respectively,
and Q is a matrix of appropriate dimension defining the boundary
conditions.

In order to study input-state/output properties of system (3),
we define each property as follows.
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Definition 2. A. Passivity: System (3) satisfies the following
inequality

⟨d, y⟩L2
[0,∞),Ω

≥ 0, (4)

subject to u0(x) ≡ 0, ∀x ∈ Ω .
B. Hp-to-Hq

Ω Reachability: For d ∈ (Hp)nd with αd ≥ p, the
solutions of (3) satisfy

∥u(T , x)∥H
q
Ω

≤ β

∥d(t, x)∥H

p
[0,T ),Ω


, ∀T > 0 (5)

with β ∈ K∞ and subject to u0(x) ≡ 0, ∀x ∈ Ω .
C. Induced Hp-to-Hq-norm Boundedness: For d ∈ (Hp)nd with
αd ≥ p and some γ > 0,

∥y∥H
q
[0,∞),Ω

≤ γ ∥d∥H
p
[0,∞),Ω

(6)

subject to zero initial conditions u0(x) ≡ 0, ∀x ∈ Ω .
D. Dp-Input-to-State Stability in H

q
Ω : For d ∈ (W

p,∞
Ω )nd with αd ≥

p, some scalar ψ > 0, functions β, β̃, χ ∈ K∞, and σ ∈ K , it
holds that

∥u∥H
q
Ω

≤ β

e−ψtχ


∥u0∥H

q
Ω


+ β̃


sup
τ∈[0,t)


Ω

σ
Dpd(τ , x)

 dx


, ∀t > 0. (7)

Remark 1. Given T > 0 and the information on H
p
[0,T ),Ω-norm of

input, inequality (5) shows how the state can evolve in the H
q
Ω

sense at t = T . In fact, a minimization over β ∈ K∞ results in an
upper bound on the reachable set at time t = T in the H

q
Ω norm.

Remark 2. In item C in Definition 2, for PDE system (3), we are
interested in estimating upper bounds on γ ∗ > 0 defined as

γ ∗
= sup

0<∥d∥Hp<∞

∥y∥Hq

∥d∥Hp
, (8)

i.e., the induced Hp-to-Hq-norm.

Remark 3. Note that the Dp-ISS property (7) assures asymptotic
convergence to the null solution in H

q
Ω when d ≡ 0. Moreover,

when d ≠ 0, as t → ∞, the first term on the right-hand side of (7)
vanishes yielding

lim
t→∞

∥u(t, x)∥H
q
Ω

≤ β̃


Ω

∥σ(|Dpd(t, x)|)∥L∞
[0,∞)

dx


≤ β̃


Ω

σ(∥d(t, x)∥W
p,∞
[0,∞)

) dx

, (9)

wherein, the fact that σ , β ∈ K∞ ⊂ K is used. Hence, when all
the spatial derivatives of the input up to order p are bounded in
L∞

[0,∞), the state u is bounded in the H
q
Ω norm. This is analogous to

the ISS property for ODEs (Sontag & Wang, 1995).

Remark 4. The reachability property is often referred to as con-
trollability (Lasiecka, Triggiani, Liu, & Krstić, 2000, Section 9.6.7)
and the induced norm boundedness property is often studied in
the context of trace regularity (e.g. see the trace regularity re-
sults for hyperbolic PDEs Lasiecka et al., 2000, Section 8A and the
Schrödinger equation Lasiecka et al., 2000, Section 10.9.3).

In the sequel,we use the concept of zero-state detectability for PDEs,
which is defined next (for the case of ODEs refer to Haddad &
Chellaboina, 2008, p. 362).

Definition 3. A system is zero-state detectable (ZSD) in H
q
Ω , if

∥y∥H
q
Ω

= 0 implies ∥u∥H
q
Ω

= 0.
Remark 5. Zero-state detectability imposes constraints onH in (3)
(∥H(x,Dδu)∥H

q
Ω

= 0 ⇒ ∥u∥H
q
Ω

= 0). In the special case of
H(x,Dδu) = h(x)u and q = 0, this is equivalent to @x ∈ Ω such
that h(x) = 0, thereby y = 0 ⇒ u = 0.

In the next theorem, we formulate the dissipation inequalities
associated with properties A–D in Definition 2.

Theorem 6. Consider the PDE system described by (3). If there exist
a positive semidefinite storage functional S(u), scalars γ ,ψ > 0, and
functions β1, β2 ∈ K∞, α, σ ∈ K satisfying ψ |U| ≤ α(|U|), such
that

(A) ∂tS(u) ≤ ⟨d, y⟩L2
Ω
, (10)

(B) β1(∥u∥H
q
Ω
) ≤ S(u), (11)

∂tS(u) ≤ γ 2
⟨d, d⟩H

p
Ω
, (12)

(C) ∥y∥H
q
Ω

= 0 ⇒ ∥u∥H
q
Ω

= 0, (13)

∂tS(u) ≤ −⟨y, y⟩H
q
Ω

+ γ 2
⟨d, d⟩H

p
Ω
, (14)

(D) β1(∥u∥H
q
Ω
) ≤ S(u) ≤ β2(∥u∥H

q
Ω
), (15)

∂tS(u) ≤ −α(S(u))+

Ω
σ(|Dpd|) dx, (16)

for all t > 0, then, respectively, system (3)
(A) is passive as in (4),
(B) is H

p
Ω-to-Hq

Ω reachable as in (5) with β(·) = β−1
1 (γ (·)),

(C) is asymptotically stable and its induced Hp-to-Hq-norm is
bounded by γ as in (6).

(D) is Dp-ISS in H
q
Ω and satisfies (7)with χ = β2, β(·) = β−1

1 ◦ 2(·)
and β̃(·) = β−1

1 ◦
2
ψ
(·).

Proof. Each item is proven in turn:
(A) Integrating both sides of (10) over time from 0 to ∞ yields

∞

0 ∂tS(u) dt ≤


∞

0


Ω
⟨d, y⟩L2

Ω
dt . That is, limt→∞ S (u(t, x)) −

S (u0) ≤


∞

0


Ω
d′y dxdt . By hypothesis, S(u) is positive semidef-

inite. Hence, for u(0, x) = 0, we have S(u(0, x)) = 0. More-
over, limt→∞ S (u(t, x)) ≥ 0. Therefore, we obtain the passivity
estimate (4).
(B) Integrating both sides of (12) over time from 0 to T yields T
0 ∂tS(u) dt ≤ γ

 T
0 ∥d∥2

H
q
Ω

dt . That is, S(u(T , x))− S(u(0, x)) ≤

γ ∥d(t, x)∥H
p
[0,T ),Ω

. Noting that, with u(0, x) ≡ 0, from (11), we
have β1(∥u(T , x)∥H

q
Ω
) ≤ S(u(T , x)) ≤ γ ∥d(t, x)∥H

p
[0,T ),Ω

. Since
β1 ∈ K∞, its inverse exists and belongs to K∞. Thus, ∥u(T , x)∥H

q
Ω

≤ β−1
1


γ ∥d(t, x)∥H

p
[0,T ),Ω


. Therefore, an estimate of the reach-

able set at t = T in terms of ∥d∥H
p
[0,T ),Ω

is attained.
(C) Subject to zero inputs d ≡ 0, (14) becomes

∂tS(u) ≤ −∥y∥2
H

q
Ω

. (17)

Inequality (17) implies that the time derivative of the storage func-
tional S(u) is negative semidefinite. Moreover, from Definition 3,
condition (13) is equivalent to system (3) being ZSD in H

q
Ω . Thus,

∂tS(u) = 0 only if ∥u∥H
q
Ω

= 0. Hence, from LaSalle’s invariance
principle (Luo, Guo, & Murgol, 1999, Theorem 3.64, p. 161), it fol-
lows that u converges to the null solution u = 0 in H

q
Ω-norm

asymptotically.
Furthermore, by integrating both sides of (14) from 0 to∞, we ob-
tain


∞

0 ∂tS(u) dt ≤ −


∞

0 ∥y∥2
H

q
Ω

dt + γ 2


∞

0 ∥d∥2
H

p
Ω

dt . That is,

limt→∞ S(u(t, x))− S(u0) ≤ −


∞

0 ∥y∥2
H

q
Ω

dt + γ 2


∞

0 ∥d∥2
H

p
Ω

dt .

Since u0(x) ≡ 0, x ∈ Ω , we have limt→∞ S(u(t, x)) ≤ −


∞

0
∥y∥2

H
q
Ω

dt +γ 2


∞

0 ∥d∥2
H

p
Ω

dt , and because S(·) is positive semidef-

inite, we obtain


∞

0 ∥y∥2
H

q
Ω

dt ≤ γ 2


∞

0 ∥d∥2
H

p
Ω

dt .
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(D) By rearranging the terms in (16) and assuming that ψ |U| ≤

α(|U|), we have ∂tS(u) + ψS(u) ≤

Ω
σ(|Dpd|) dx. Multiply-

ing both sides of the above inequality by the strictly increasing
function eψt , we have eψt (∂tS(u)+ ψS(u)) ≤ eψt


Ω
σ(|Dpd|) dx.

Then, it follows that

d
dt


eψtS


≤ eψt


Ω

σ(|Dpd|) dx. (18)

Integrating both sides of inequality (18) from 0 to t gives

eψtS(u(t, x))− S(u(0, x))

≤

 t

0
eψτ


Ω

σ(|Dpd(τ , x)|) dx

dτ

≤

 t

0
eψτ dτ


sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx


≤
1
ψ
(eψt

− 1) sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx


≤
eψt

ψ
sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx

, (19)

where Hölder’s inequality is used in the second inequality above.
Dividing both sides of the last inequality above by the positive term
eψt gives S(u) ≤ e−ψtS(u0) +

1
ψ
supτ∈[0,t)


Ω
σ(|Dpd(τ , x)|) dx


.

Using (15), we infer that

β1(∥u∥H
q
Ω
) ≤ e−ψtβ2(∥u0∥H

q
Ω
)

+
1
ψ

sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx

. (20)

Since β1 ∈ K∞, its inverse exists and belongs to K∞. Hence,
taking the inverse of β1 from both sides of (20) yields ∥u∥H

q
Ω

≤

β−1
1


e−ψtβ2(∥u0∥H

q
Ω
) +

1
ψ
supτ∈[0,t)


Ω
σ(|Dpd(τ , x)|) dx


, and,

applying inequality (1), it follows that

∥u∥H
q
Ω

≤ β−1
1


2e−ψtβ2(∥u0∥H

q
Ω
)


+β−1

1


2
ψ

sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx

,

and (7) is obtained with χ = β2, β(·) = β−1
1 ◦ 2(·) and β̃(·) =

β−1
1 ◦

2
ψ
(·).

Remark 7 (Conservative Systems). For p = q = 0, if we consider
the squared L2

Ω-norm as the storage functional, i.e. S(u) =

∥u∥2
L2
Ω

=

Ω
u2 dx, inequality (14) in Theorem 6 can be re-written

as

∂t


∥u∥2

L2
Ω


≤ γ 2

∥d∥2
L2
Ω

− ∥y∥2
L2
Ω

.

Integrating both sides of the above inequality over time from 0
to T > 0 yields ∥u(T , ·)∥2

L2
Ω

− ∥u0∥
2
L2
Ω

≤ γ 2
 T
0 ∥d∥2

L2
Ω

dt − T
0 ∥y∥2

L2
Ω

dt . Then, in the special case when γ = 1 and equality

holds, we obtain ∥u(T , ·)∥2
L2
Ω

− ∥u0∥
2
L2
Ω

=
 T
0 ∥d∥2

L2
Ω

dt − T
0 ∥y∥2

L2
Ω

dt , which implies that the PDE is conservative2 as

studied inWeiss, Staffans, and Tucsnak (2001);Weiss and Tucsnak
(2003).

2 That is, since T > 0 is arbitrary, the induced L2-to-L2-norm of the system is 1.
We illustrate Theorem 6 using an example.

Example 1. Consider the following PDE system

∂tu(t, x) = ∂2x u(t, x)− u(t, x)∂xu(t, x)+ d(t, x),

y(t, x) = u(t, x), x ∈ (0, 1), t > 0 (21)

subject to u(0, t) = u(1, t) = 0. In the following, we show
that for the above system the following storage functional satisfies
inequalities (15), and (16) with p = 0 and q = 0

S(u) =
1
2

 1

0
u2(t, x) dx. (22)

In other words, using storage functional (22), we demonstrate
that the system is D0-ISS in L2

Ω . Note that the storage functional
(22) satisfies c

2

 1
0 u2 dx ≤

1
2

 1
0 u2 dx ≤

C
2

 1
0 u2 dx for some

0 < c < 1 and C > 1. Thus, inequality (15) is satisfied with
q = 0. Substituting (22) in (16) with p = 0 and noting that
ψ |U| ≤ α(|U|), we have

−
ψ

2

 1

0
u2 dx +

 1

0
σ(|d|) dx

≥

 1

0
u

∂tu  
∂2x u − u∂xu + d


dx. (23)

By integration by parts and using the boundary conditions, we
have

 1
0 u∂2x u dx = −

 1
0 (∂xu)

2 dx, and
 1
0 u2∂xu dx = 0. Then,

inequality (23) becomes

−
ψ

2

 1

0
u2 dx +

 1

0
σ(|d|) dx ≥ −

 1

0
(∂xu)2 dx

+

 1

0
ud dx. (24)

In addition, using Hölder and Young inequalities we have 1

0
ud dx ≤

1
2

 1

0
u2 dx +

1
2

 1

0
d2 dx. (25)

In the following, we show that the left hand side of (24) is greater
than a quantity which is greater than the right hand side of
(24). Thus, inequality (24) also holds. Applying inequality (25),
we check −

ψ

2

 1
0 u2 dx +

 1
0 σ(|d|) dx ≥ −

 1
0 (∂xu)

2 dx +

1
2

 1
0 u2 dx +

1
2

 1
0 d2 dx. Moving the terms involving d and u

to the left and the right hand side of the above inequality, re-
spectively, gives −

ψ

2

 1
0 u2 dx +

 1
0 (∂xu)

2 dx −
1
2

 1
0 u2 dx ≥

−
 1
0 σ(|d|) dx +

1
2

 1
0 d2 dx. By choosing σ(|d|) =

d2
2 , we ob-

tain −


ψ+1
2

  1
0 u2 dx +

 1
0 (∂xu)

2 dx ≥ 0. From the Poincaré in-
equality, we infer that if we choose ψ and correspondingly α such
that ψ+1

2 ≤ π2, then the above inequality holds. Consequently, we
demonstrated using storage functional (22) that system (21) is D0-
ISS in L2

Ω .

From the above example, it is evident that finding the storage
functional and checking the associated dissipation inequalities is
not straightforward.3 In Section 6, we demonstrate that for PDEs
with polynomial data the dissipation inequalities can be solved by
convex optimization.

3 It requires applying integration-by-parts and inequalities from functional
analysis.



M. Ahmadi et al. / Automatica 66 (2016) 163–171 167
4. PDEs with boundary inputs and boundary outputs

In this section, under well-posedness assumptions, we formu-
late conditions to study the input–output properties of PDEs with
boundary inputs and outputs. Consider the following PDE system
∂tu(t, x) = F (x,Dαu(t, x)) ,
y(t) = h


Dβu(t, 0)


, (t, x) ∈ R≥0 ×Ω

QDα−1u(t, 0) = 0, QDα−1u(t, 1) = w(t),
(26)

and initial conditions u(0, x) = u0(x), where Q is of appropriate
dimension, y = (y1, y2, . . . , yny)

′, and w = (w1, w2, . . . , wnw )
′.

Next, we define input-state/output properties for PDE (26).

Definition 4. A. Passivity (Van der Schaft, 1996): System (26)
satisfies the following inequality

⟨w, y⟩L2
[0,∞)

≥ 0, (27)

subject to u0(x) ≡ 0, ∀x ∈ Ω .
B. L2

[0,∞)-to-H
q
Ω Reachability (Van der Schaft, 1996): For w ∈

(L2
[0,∞))

nw , the solutions of (26) satisfy

∥u(T , x)∥H
q
Ω

≤ β

∥w(t)∥L2

[0,T )


, ∀T > 0 (28)

with β ∈ K∞ and subject to u0(x) ≡ 0, ∀x ∈ Ω .
C. Induced L2

[0,∞)-norm Boundedness (Van der Schaft, 1996): For
w ∈ (L2

[0,∞))
nw and some γ > 0,

∥y∥L2
[0,∞)

≤ γ ∥w∥L2
[0,∞)

(29)

subject to zero initial conditions u0(x) ≡ 0, ∀x ∈ Ω .
D. Input-to-State Stability inH

q
Ω : Forw ∈ (L∞

[0,∞))
nw , some scalar

ψ > 0, functions β, β̃, χ ∈ K∞, and σ ∈ K , it holds that

∥u∥H
q
Ω

≤ β

e−ψtχ


∥u0∥H

q
Ω


+ β̃


sup
τ∈[0,t)

σ (|w(τ)|)


, ∀t > 0. (30)

Remark 8. The Input-to-State Stability in H
q
Ω property defined

above parallels the ISS property for ODE systems as given in Sontag
(1989). However, ISS in H

q
Ω property for PDEs includes bounds

on states u defined in the Sobolev norm of interest H
q
Ω . This is

essential for the ISS analysis of solutions of PDEs since the norms
are not equivalent in Sobolev spaces as opposed to Euclidean
spaces.

The next result follows from Theorem 6.

Corollary 9. Consider the PDE system described by (26). If there exist
a positive semidefinite storage functional S(u), scalars γ ,ψ > 0, and
functions β1, β2 ∈ K∞, α, σ ∈ K satisfying ψ |U| ≤ α(|U|), such
that

(A) ∂tS(u) ≤ w′(t)y(t), (31)
(B) β1(∥u∥H

q
Ω
) ≤ S(u), (32)

∂tS(u) ≤ γ 2w′(t)w(t), (33)

(C) ∂tS(u) ≤ −y′(t)y(t)+ γ 2w′(t)w(t), (34)

(D) β1(∥u∥H
q
Ω
) ≤ S(u) ≤ β2(∥u∥H

q
Ω
), (35)

∂tS(u) ≤ −α(S(u))+ σ(|w(t)|), (36)

for all t > 0, then, respectively, system (26)
(A) satisfies the passivity property (27),
(B) satisfies theL2

[0,∞)-to-H
q
Ω reachability property (28)withβ(·) =

β−1
1 (γ 2(·)2),
Fig. 1. The interconnection of two PDE systems.

(C) is stable and has its inducedL2
[0,∞)-norm bounded by γ as in (29).

(D) is ISS in H
q
Ω and satisfies (30) with χ = β2, β(·) = β−1

1 ◦ 2(·)
and β̃(·) = β−1

1 ◦
2
ψ
(·).

Proof. The proof of Items A, B, and D follows the same lines as
the proof of Theorem 6. For Item C , LaSalle’s invariance principle
cannot be used to conclude asymptotic stability as was the case
in Theorem 6, since with d ≡ 0 inequality (34) is converted to
∂tS(u) ≤ −y′(t)y(t) which implies that the solutions to (26) are
stable. However, y(t) = 0 only contains information about the
values at the boundaries; i.e., h


Dβu(t, 0)


= 0, which does not

necessarily imply u(t, x) = 0 for all (t, x) ∈ R≥0 ×Ω .

5. Interconnections

The next result is a small-gain theorem, which ensures stability
or asymptotic stability of interconnected PDE systems under some
assumptions.

Theorem 10. Let

Σi :


∂tui = Fi(x,Dα

i
uui,Dα

i
dd),

yi = Hi(x,Dδ
i
ui), (t, x) ∈ R≥0 ×Ω

Qi


Dα

i
u−1ui(t, 1)

Dα
i
u−1ui(t, 0)


= 0, Qi


Dα

i
d−1di(t, 1)

Dα
i
d−1di(t, 0)


= 0,

(37)

for i = 1, 2. Consider the interconnected PDE systems Σ1 and Σ2
as depicted in Fig. 1. If Σ1 and Σ2 have induced Hq-to-Hq-norms
γ1 and γ2, respectively, in the sense of (6), then, the interconnected
system is stable in H

q
Ω , provided that

γ1γ2 < 1. (38)

Furthermore, if each of subsystems Σ1 and Σ2 are ZSD in H
q
Ω , then

asymptotic stability in H
q
Ω holds for the interconnected system.

Proof. Let S1 and S2 be two storage functionals for Σ1 and Σ2. By
hypothesis, it holds that

∂tSi ≤ −⟨yi, yi⟩H
q
Ω

+ γ 2
i ⟨di, di⟩H

q
Ω
, i = 1, 2. (39)

Define µ such that γ1 < µ < 1
γ2
. Therefore, γ1γ2 < µγ2 <

1. Let S = S1 + µ2S2. Then, from (39), it follows that ∂tS ≤

−⟨y1, y1⟩H
q
Ω

+ γ 2
1 ⟨d1, d1⟩H

q
Ω

− µ2
⟨y2, y2⟩H

q
Ω

+ µ2γ 2
2 ⟨d2, d2⟩H

q
Ω
.

With the interconnection y1 = d2 and y2 = −d1, we have ∂tS ≤

−(1 − µ2γ 2
2 )⟨y1, y1⟩H

q
Ω

− (µ2
− γ 2

1 )⟨y2, y2⟩H
q
Ω
. Thus, from (38)

and the definition of µ, it follows that the time derivative of the
storage functional S is non-positive, which, in turn, implies that
the interconnected PDE system is stable in H

q
Ω . Moreover, from

ZSD property of Σ1 and Σ2, one can infer that ∥yi∥H
q
Ω

= 0 ⇒

∥ui∥H
q
Ω

= 0, i = 1, 2. Hence, ∂tS(u) = 0 only if ∥ui∥H
q
Ω

= 0, i =

1, 2. Consequently, from LaSalle’s invariance principle, it follows
that (u1, u2) → 0 as t → ∞ in H

q
Ω . This completes the proof.
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The next corollary asserts that stability in H
q
Ω holds, if both

subsystems of interconnection in Fig. 1 with boundary inputs and
boundary outputs have bounded L2

[0,∞)-norms and satisfy a small
gain criterion.

Corollary 11. Let

Σ1 :


∂tu1 = F1(x,Dα

1
uu1)

y1 = h1(Dβ
1
u1(t, 1)),

Q1Dα
1
u−1u1(t, 0) = w1(t), Q1Dα

1
u−1u1(t, 1) = 0,

and

Σ2 :


∂tu2 = F2(x,Dα

2
uu2)

y2 = h2(Dβ
2
u2(t, 0)),

Q2Dα
2
u−1u2(t, 0) = 0, Q2Dα

2
u−1u2(t, 1) = w2(t),

with interconnectionw1 = −y2 andw2 = y1. If Σ1 andΣ2 have in-
ducedL2

[0,∞)-norms γ1 and γ2, respectively, in the sense of (29), then,
the interconnected system is stable in H

q
Ω , provided that γ1γ2 < 1.

6. Computation of storage functionals

For computational purposes, we assume that the studied PDEs
are polynomial in the dependent and independent variables,
i.e., functions F and H in (3) and functions F and h in (26) are
all polynomials. The following structure is also considered as a
candidate storage functional to check the dissipation inequalities
given in Theorem 6 and Corollary 9:

S(u) =
1
2
⟨u, P(x)u⟩H

q
Ω

:=
1
2

 1

0
(Dqu)′P(x)(Dqu) dx, (40)

where, P(x) : Ω → S is a symmetric positive definite polynomial
matrix function for all x ∈ Ω . This storage functional candidate
satisfies

1
2
λ(P)∥u∥2

H
q
Ω

≤ S(u) ≤
1
2
λ̄(P)∥u∥2

H
q
Ω

. (41)

Therefore, (S(u))
1
2 is equivalent to the H

q
Ω-norm.

6.1. PDEs with in-domain inputs/outputs

Next, we discuss how conditions of Theorem 6 are checked via
integral inequalities.

Remark 12. From (41), it follows that (11) and (15) are satisfied,
respectively, withβ1(·) =

λ(P)
2 (·)

2,β−1
1 (·) =


2
λ(P) (·), andβ2(·) =

λ̄(P)
2 (·)

2. �

Let η = γ 2. For reachability analysis, we solve the following
minimization problem:

Problem 1 (Reachability for System (3)).

minimize η subject to (12), and ν2I < P(x), (42)

where, ν is a constant.
In this case, the reachability estimate (5) transforms to

∥u(T , x)∥H
q
Ω

≤
γ

ν
∥d(t, x)∥H

p
[0,T ),Ω

, ∀T > 0. (43)

Similarly, for induced Hp-to-Hq-norm, the following minimiza-
tion problem is solved:
Problem 2 (Induced Hp-to-Hq Norm for System (3)).

minimize η subject to (14). (44)

When adopting the storage functional structure (40) for Dp-ISS in
H

q
Ω , it is possible to check the condition

∂tS(u) ≤ −


Ω

(Dqu)′α(x)(Dqu) dx +


Ω

σ(|Dpd(t, x)|) dx,

instead of (16), where α : Ω → Sn is a symmetric positive definite
polynomial function for all x ∈ Ω . In this case, the Dp-ISS estimate
translates to

∥u∥H
q
Ω

≤


e−

λ(α)
λ(P) t


∥u0∥

2
H

q
Ω

 1
2

+


1
λ(α)

sup
τ∈[0,t)


Ω

σ(|Dpd(τ , x)|) dx
 1

2

. (45)

6.2. PDEs with boundary inputs and boundary outputs

In this subsection, we discuss a computational formulation
of Corollary 9. To formulate the problem in terms of integral
inequalities with polynomial integrands, we assume that the
function σ in inequality (36) is polynomial, while the storage
functional is given by (40).

Substituting (26) in inequalities (31), (33), (34), and (36)
respectively yields

(I) ∂tS(u) ≤

Dα−1u(t, 1)

′
Q ′h


Dβu(t, 0)


, (46)

(II) ∂tS(u) ≤ γ 2 Dα−1u(t, 1)
′
Q ′Q


Dα−1u(t, 1)


, (47)

(III) ∂tS(u) ≤ −h′

Dβu(t, 0)


h

Dβu(t, 0)


+ γ 2 Dα−1u(t, 1)

′
Q ′Q


Dα−1u(t, 1)


, (48)

(IV) ∂tS(u) ≤ −


Ω

(Dqu)′α(x)(Dqu) dx

+ σ
QDα−1u(t, 1)

 , (49)

where α : Ω → Sn is a symmetric positive definite polynomial
matrix function for all x ∈ Ω . Let η = γ 2. For reachability analysis,
the following minimization problem is solved:

Problem 3 (Reachability for System (26)).

minimize η subject to (47), and ν2I < P(x), (50)

where, ν is a constant.

Then, the reachability estimate (28) transforms to

∥u(T , x)∥H
q
Ω

≤
γ

ν
∥w(t)∥L2

[0,T )
, ∀T > 0. (51)

Analogously, we solve the following minimization problem for
L2

[0,∞)-to-H
q-norm:

Problem 4 (Induced L2
[0,∞)-to-H

q Norm for System (26)).

minimize η, subject to (48). (52)

Provided that the problem data are polynomial in the depen-
dent variables, one can formulate convex optimization problems
(SOS programs) to solve the inequalities discussed in this section.
In this regard, we use the approach given in Valmorbida et al.
(in press) to solve integral inequalities with polynomial integrands
using convex optimization.
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Table 1
Results pertained to induced L2-to-L2-norm for PDE (53).

√
2β
π

0 0.1 0.12 0.15 0.18 0.2

γ 2 0.195 0.306 0.351 0.452 0.666 1.062

Fig. 2. The L2-to-L2 gain curve.

7. Numerical examples

In this section, we illustrate the proposed results in the paper
using two numerical examples.

7.1. Example I: Reaction–diffusion–convection PDE with nonlinear
forcing (Krstic, Magnis, & Vazquez, 2008; Straughan, 2004)

Consider the following PDE
∂tu =

1
R
∂2x u − δu∂xu + βu2

+ d,
u(t, 0) = 0, u(t, 1) = w(t), (t, x) ∈ R≥0 × (0, 1)

(53)

subject to d(t, 0) = d(t, 1) = 0 for all t ≥ 0, where R, δ, β are
constants.

7.1.1. In-domain analysis (w ≡ 0, R = 1 and δ = 1)
Let y(t, x) = u(t, x), (t, x) ∈ R≥0 × (0, 1). The system

without inputs (d ≡ 0, w ≡ 0) is exponentially stable for β <
π
√
2
(Straughan, 2004, p. 20). Using condition (10) in Theorem 6,

certificates were found for passivity just for β = 0. For the induced
L2-to-L2-norm, Table 1 provides the numerical details of the
numerical experiments. From numerical experiments, certificates
were constructed for L2-norm boundedness of system (53) for
β ≤ 0.2 π

√
2
.

At this point, let β = 0. Similar to nonlinear ODEs, we
expect the nonlinear PDE to have a nonlinear induced L2-to-
L2 gain function (Garulli, Masi, Valmorbida, & Zaccarian, 2013).
Fig. 2 illustrates the obtained (upper bound) gain functions from
numerical experiments.

7.1.2. Boundary analysis (d ≡ 0)
Assume y(t) = ∂xu(t, 0), t > 0. Let δ = β = 0. First, we

study the upper bounds on γ as in (29). It is assumed u0(x) ≡

0, ∀x ∈ (0, 1). Fig. 3 illustrates the results obtained for R ∈

[0.01, 10]. For each R, Problem 4 is solved and the minimum γ
is shown in the figure. As it can be inferred from the figure, as R
increases and therefore the effect of the diffusion term is reduced,
the obtained bounds on γ increase. At this point, we study the
ISS property in L2

Ω of system (53) with δ = 1 and R = 1.
The ISS bound on β for which ISS certificates could be found was
β = (0.43) π√

2
. Fig. 4 depicts the constructed certificates P(x) and

α(x) for β = (0.43) π√
2
. Also, the certificate σ(w) is calculated as

σ(w) = 0.9506w4
+ 7.1271w2.
Table 2
Results pertained to induced L2-to-H1-norm for PDE (54).

λ

4π2 0.3 0.5 0.55 0.6 0.7 0.9

γ 2 0.003 0.048 0.517 1.211 3.229 9.840

Fig. 3. The obtained upper bounds on induced L2
[0,∞)-to-L

2-norm.

7.2. Example II: Kuramoto–Sivashinsky equation

Consider the following PDE∂tu = −∂4x u − λ∂2x u − u∂xu + d,
y = u, (t, x) ∈ R≥0 × (0, 1),
u(t, 0) = u(t, 1) = ∂xu(t, 0) = ∂xu(t, 1) = 0.

(54)

It was demonstrated in Lasiecka, Triggiani, Liu, and Krstić (2000)
that for constant λ the system is exponentially stable in H2

Ω-norm
(thus, from Sobolev Embeddings, stable in H1

Ω-norm as well) for
λ ≤ 4π2.

First, we consider computing upper bounds on the induced L2-
to-H1-norm of the system. The results are depicted in Table 2.
Fig. 5 shows the elements of the 2 × 2 matrix P(x) in the stor-
age functional and its eigenvalues for λ = (0.9)4π2. Finally, let
λ(x) = λ0 − 16π2x(1 − x). Then, in (54), the spatially varying
coefficient λ(x) crosses the stability bound λ = 4π2 (at least) at
subsets of the domain for λ0 ≥ 4π2. We seek upper bounds on λ0
such that certificates forD1-ISS inH1

Ω can be found. For constant λ,
certificates could only be found up to λ = (0.62)4π2. However, for
the spatially varying λ, we could construct certificates for D1-ISS in
H1
Ω for λ0 = (1.83)4π2. Fig. 6 illustrates the eigenvalues of certifi-

cates P(x) and α(x) for the case λ0 = (1.83)4π2 and σ(d, ∂xd)was
calculated as σ(d, ∂xd) = 3.2314d2 + 4.0093(∂xd)2.

8. Conclusions and future work

In this paper, we proposed a methodology for the input-state/
output analysis of well-posed PDEs using dissipation inequalities
and we provided a systematic computational method for solving
the dissipation inequalities in the case of polynomial data.

In Section 4, we delineated a method for input-state/output
analysis of finite-dimensional inputs and outputs which are
defined at the boundary. For results pertaining to a more general
class of finite dimensional inputs and outputs and some additional
discussions please refer to the addendum to this paper at Ahmadi,
Valmorbida, and Papachristodoulou (2015a).

In many engineering design problems, one is interested in
computing a functional of the solutions of the PDE. An example
is the drag estimation problem in aerodynamics. A computational
methodwith certificates to find bounds on such output functionals,
without the need to solve the underlying PDEs, is under
development (for preliminary results see Ahmadi, Valmorbida, &
Papachristodoulou, 2015b).
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Fig. 4. The ISS certificates P(x) (left) and α(x) (right).
Fig. 5. The entries of P(x) (left) and the eigenvalues of P(x) (right) for the case λ = (0.9)4π2 .
Fig. 6. D1-ISS in H1
Ω certificates for PDE (54) with λ0 = (1.8)4π2 .
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