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Abstract— We propose a method for bounding state func-
tionals of a class of nonlinear stochastic differential equations.
Given a class of state functionals of a stochastic system, the
Feynman-Kac Lemma is a backward in time partial differential
equation that describes the evolution of the state functional. We
bound these state functionals based on a method which uses
barrier functionals. We show that, under the assumption of
polynomial data, the bounds can be obtained by using semi-
definite programming. The proposed method is then applied to
the case study of noise in genetic negative autoregulation to
bound a functional of the second moment, which is of specific
interest to experimental assays. The bound obtained is found to
be in good agreement with experimental results in the literature.

I. INTRODUCTION

The complexity of many dynamical systems in nature and
engineering requires models that are described by stochastic
differential equations (SDEs). For example, in biochemical
interactions, where the occurrence of reactions due to thermal
fluctuations is a random process, deterministic models fail to
capture the dynamics properly, especially in the case of small
species populations [1].

Finding explicit solutions to nonlinear SDEs is a cum-
bersome task in general. Hence, numerical methods, such
as the Euler-Maruyama method [2], are used to approximate
solutions. Yet, for significant classes of SDEs, approximating
solutions is too computationally demanding, in particular, if
there is uncertainty in the parameters or initial conditions.
Fortunately, Lyapunov methods can be used to study stability
and convergence properties of SDEs without the need to
approximate solutions [3].

Rather than studying stability, in many important applica-
tions, we are merely interested in evaluating the moments
or integral functionals of the moments at particular points
in time. It is well known that functionals of the solutions of
the stochastic models for asset prices describe the price of an
option [4]. For nonlinear SDEs, finding the dynamics of the
statistical moments is not trivial, because the dynamics of the
lower-order moments depend on the higher-order moments:
the moment closure problem. This problem has been studied
extensively in the context of biological applications [5] and,
in particular, biochemical reaction networks [6], [7].
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In this paper, we propose a method for bounding state
functionals of a class of nonlinear SDEs. The method is
based on a generalized version of the Feynman-Kac Lemma,
which describes the backward dynamics of a cost functional
of the moments of an SDE. The main tool is the barrier
functional [8], which is a generalization of barrier certifi-
cates [9] to infinite-dimensional systems. We demonstrate
that if the barrier functional satisfies two inequalities along
the solutions of the backward dynamics, then we can infer
bounds on the cost functional of the moments. We further
show that, under the assumption of polynomial data, the
proposed method can be cast as a semi-definite program
(SDP). In this regard, we generalize our earlier results in [10]
and in [11] to integral inequalities with time dependence.
Furthermore, we formulate an S-procedure-like theorem for
integral inequalities.

The proposed method is applied to the case study of
negative autoregulation. This gene circuit motif implements
the simplest form of biological negative feedback. As under-
standing of biological systems with feedback increases [12],
[13], there is an ever greater need for the application of the-
oretical tools to the fields of systems and synthetic biology.
Negative autoregulation is well studied and ubiquitous in
nature [14], [15]. Though it has been shown that negative
autoregulation experimentally reduces rise time, measuring
the dynamics of such systems in an experimental context
continues to be challenging. On the other hand, noisy data,
at both culture and single cell level, is a common and
reliable tool [14], [15]. This motivates the need for accurate
theoretical tools to calculate and predict the concentration
distributions of studied proteins across a populations of cells.

The rest of this paper is as follows. In Section II, we
briefly review some background definitions and theorems. In
Section III, we describe the proposed method for bounding
state functionals of SDEs using barrier functionals. We then
propose a computational method based on SDPs to find these
bounds. Section IV considers the application of the proposed
method to find bounds on a functional of the second moment
of a model of negative autoregulation. Finally, Section V
concludes the paper.

Notation:
The n-dimensional Euclidean space is denoted by Rn and

the set of non-negative reals by R≥0. The n-dimensional set
of positive integers is denoted by Nn, and the n-dimensional
space of non-negative integers is denoted by Nn≥0. The
notation M ′ denotes the transpose of matrix M and Tr{M}
is the trace of the square matrix M . A domain Ω is an open
subset of Rn with C1 boundary ∂Ω. The ring of polynomials
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on real variables x ∈ Rn and y ∈ Rm is denotedR[x, y]. The
space of k-times continuous differentiable functions defined
on Ω is denoted by Ck(Ω) and the space of Ck(Ω) functions
mapping to a set Γ is denoted Ck(Ω; Γ). For a multivariable
function f(x, y), we use the notation f(x, ·) ∈ Ck[x] to
show k-times continuous differentiability of f with respect
to variable x. If p ∈ C1(Ω), then ∂xp denotes the derivative
of p with respect to variable x ∈ Ω. In addition, we adopt
Schwartz’s multi-index notation. For u ∈ Ck(Ω;Rn), α ∈
Nn≥0, define

Dαu := (u1, ∂xu1, . . . , ∂
α1
x u1, . . . , un, ∂xun, . . . , ∂

αn
x un) .

For functions f ∈ C1(Ω) and g ∈ C2(Ω), ∇f denotes the
gradient vector and ∇2g denotes the Hessian matrix. For a
random variable X , E{X} denotes its expected value.

II. PRELIMINARIES

Let T > 0 and let (Γ,J , {Js}s≥0,P) be a complete
and right-continuous filtered probability space, where Γ is
a sample space, {Js}s≥0 with Js ⊆ J for each s is
a filteration of the σ-algebra J , and P is the probability
measure function. Consider the following SDE{

dX(s) = f(s,X(s))ds+ g(s,X(s))dW (s), s ∈ [t, T ],

X(t) = x,
(1)

where x is a Jt-measurable random variable, X(s) ∈ Ω ⊂
Rd denotes the states and W (s) ∈ Rm is an m-dimensional
standard {Js}s≥0-Wiener process starting at t (i.e., W (t) =
0). Moreover, consider the following backward in time PDE

−∂tu(t, x) =
1

2
Tr
{
g(t, x)g′(t, x)∇2u(t, x)

}
+f ′(t, x)∇u(t, x) + c(t, x)u(t, x)

+h(t, x), (t, x) ∈ [0, T )× Ω,

u(T, x) = q(x). (2)

Assumption I: The maps f : [0, T ] × Ω → Rd and g :
[0, T ]× Ω→ Rd×m, c, h : [0, T ]× Ω→ R, and q : Ω→ R
are uniformly continuous, c is bounded, and there exists a
constant L > 0 such that for φ = f, g, c, h,{
|φ(t, x)− φ(t, x̂)| ≤ L|x− x̂|, ∀t ∈ [0, T ], x, x̂ ∈ Ω

|φ(t, 0)| ≤ L, ∀t ∈ [0, T ].
(3)

Remark 1: If Assumption I holds, there exists a unique
{Js}s≥0-adapted continuous process X(s), s ≥ 0 that is a
unique strong solution to SDE (1) (see Definition 6.2 in [16]).

Define

τ := inf {s ∈ [t, T ] | X(s) /∈ Ω} . (4)

We recall the following result (Theorem 4.2, p. 374 in [16]
and Theorem 7.6, p. 366 in [17]), which is a generalized
version of the Feynman-Kac Lemma.

Theorem 1: Consider (2) with boundary conditions
u |∂Ω= ψ(t, x) and SDE (1). Let Assumption I hold. Let

Ψ(t, x) =

{
q(x), (t, x) ∈ [0, T ]× Ω,

ψ(t, x), (t, x) ∈ [0, T ]× ∂Ω,
(5)

be a continuous function on ([0, T ] × Ω) ∪ ([0, T ] × ∂Ω).
Then, (2) with boundary conditions u |∂Ω= ψ(t, x) admits a
unique viscosity solution given by

u(t, x) = E

{∫ τ

t

h(s,X(s))e−
∫ s
t
c(r,X(r))drds

+ Ψ(τ,X(τ))e−
∫ τ
t
c(r,X(r))dr | X(t) = x

}
,

(t, x) ∈ [0, T ]× Ω, (6)

where X is the unique strong solution of SDE (1). In
addition, if (1) admits a classical solution, then (6) is a
classical solution to (2).

Theorem 1 relates the solutions of the SDE (1) to the
solution of the backward PDE (2) through functional (6).
The functional given in (6) encompasses a rich class of state
functionals of SDE (1). For instance, for c = 0, h(s,X(s)) =
X3(s) and q(X(T )) = X3(T ),

u(0, x) = E

{∫ T

0

X3(s)ds+X3(T ) | X(0) = x

}
,

represents the finite-time cost functional with a terminal
value of the third moment of the solutions to SDE (1).

III. MAIN RESULTS

In this section, we propose a method for bounding state
functionals of SDEs based on barrier functionals, which
reduces to solving an optimization problem. Moreover, we
show that, in the case of polynomial data, the optimization
problem can be cast as an SDP.

A. Bounding State Functionals of SDEs using Barrier Func-
tionals

Let U ⊆ C1[t] ∩ C2[x]. We define the Barrier Functional

B(t, u) = B(t)u, (7)

where B(t) : U → R is a possibly nonlinear operator.
Finding bounds on the moments of the nonlinear SDE (1)

is not straightforward due to the moment closure problem.
In addition, when (1) is nonlinear, solving the backward
PDE (2) in general is cumbersome. In the following, we
propose a method for bounding the solutions of PDE (2)
and hence state functionals of (1).

We begin by showing that if the barrier functional (7)
satisfies two inequalities along the solutions of the backward
system (2), we can ensure that the solutions of (2) avoid an
undesirable set.

Theorem 2: Consider the backward PDE (2). Given a set
of terminal conditions

UT =
{
u ∈ U | u(T, x) = q(x)

}
, (8)

an undesirable set Yu such that UT ∩Yu = ∅, and t0 ∈ [0, T ],
if there exists a barrier functional B(t, u(t, x)) ∈ C1[t] as
in (7) such that the following inequalities hold
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B(t0, u(t0, x))−B(T, u(T, x)) > 0,

∀u(t0, x) ∈ Yu, ∀u(T, x) ∈ UT , (9a)
dB(t, u(t, x))

dt
≥ 0, ∀t ∈ [0, T ], ∀u ∈ U , (9b)

along the solutions of (2), then the solutions u(t, x) of (2)
satisfy u(t0, x) /∈ Yu for t0 ∈ [0, T ].

Proof: We prove the theorem by contradiction. Assume
that at time t0 ∈ [0, T ], there exists a solution u(t, x) to
(2) with u(T, x) ∈ UT that satisfies u(t0, x) ∈ Yu. Then,
from (9a), we have

B(t0, u(t0, x))−B(T, u(T, x)) > 0. (10)

On the other hand, inequality (9b) implies that for all t ∈
[0, T ], it holds that dB(t,u(t,x))

dt ≥ 0. Integrating both sides
of the latter inequality, from t to T , yields∫ T

t

dB(t, u(t, x))

dt
dt = B(T, u(T, x))−B(t, u(t, x)) ≥ 0.

Since t, t0 ∈ [0, T ], this contradicts (10). Therefore, there is
no solution to (2) that satisfies u(t0, x) ∈ Yu.

In the next Corollary, we show how Theorem 2 can be
used for bounding state functionals of SDE (1). We use
an appropriate definition for the undesirable set Yu and a
corresponding optimization problem.

Corollary 1: Consider PDE (2) and SDE (1). Let

Yu = {u ∈ U | u(t0, x) > γ} . (11)

If there exists a barrier functional B(t, u(t, x)) ∈ C1[t] such
that inequalities (9a) and (9b) are satisfied along the solutions
of (2), then we have

E

{∫ τ

t0

h(s,X(s))e
−

∫ s
t0
c(r,X(r))dr

ds

+ Ψ(τ,X(τ))e
−

∫ τ
t0
c(r,X(r))dr | X(t0) = x

}
≤ γ. (12)

Proof: If there exists a barrier functional B(t, u(t, x)) ∈
C1[t] such that inequalities (9a) and (9b) are satisfied along
the solutions of (2), from Theorem (2), we can infer that
u(t0, x) /∈ Yu with Yu as described by (11). Thus, u(t0, x) ≤
γ. From Theorem 1, we have

u(t0, x) = E

{∫ τ

t0

h(s,X(s))e
−

∫ s
t0
c(r,X(r))dr

ds

+ Ψ(τ,X(τ))e
−

∫ τ
t0
c(r,X(r))dr | X(t) = x

}
, (13)

Therefore, u(t0, x) ≤ γ implies that (12) holds.
In order to find the upper bound on the state functional,
i.e., minimum γ in (12), we solve the following optimization
problem

minB(t,u(t,x)) γ

subject to (9a) and (9b). (14)

Remark 2: If the domain Ω is chosen such that for all
s ∈ [0, T ], X(s) ∈ Ω, we can replace τ with T and Ψ(t, x) =
q(x) in Theorem 1 and Corollary 1. Then, we have

u(t0, x) = E

{∫ T

t0

h(s,X(s))e
−

∫ s
t0
c(r,X(r))dr

ds

+ q(X(T ))e
−

∫ T
t0
c(r,X(r))dr | X(t) = x

}
.

Remark 3: In [18], an SDP-based method for bounding
the moments of continuous-time Markov chains, based on
the Foster-Lyapunov stability theory (see condition CD2′

in [19]), is proposed. Continuous-time Markov chains can be
represented by the Chemical Master Equations (CMEs) [20],
which are a set of ODEs. When the system is sufficiently
large, CMEs can be approximated by a set of SDEs called
Chemical Langevin Equations (CLEs) [21] to which the
method studied in this paper can be applied to find bounds.

B. Computational Method Based on SDPs

This section focuses on the computation of barrier func-
tionals satisfying the conditions of Theorem 2 and Corol-
lary 1 using semi-definite programming under some assump-
tions. In this respect, we reformulate the problem of checking
positivity of time-dependent integral inequalities into solving
SDPs.

1) Solving Integral Inequalities in 1D: This subsection
presents conditions for the verification of time-dependent
integral inequalities, defined in a bounded interval. These
conditions are obtained by considering a quadratic-like rep-
resentation of the integrand and differential relations among
the dependent variables. As a result, the positivity of the
integral is checked via the positivity of a matrix function,
describing the quadratic form in the integrand, over the
domain of integration. The conditions and the main steps
for their derivation are presented below. These steps are all
automated and available as a plug-in to SOSTOOLS [22].

Let Ω = (a, b) ⊂ R. Consider the following inequality

F =

∫ b

a

(Dαu)′F (t, x)(Dαu) dx

−
[
(Dα−1u(t, b))′F1(t)(Dα−1u(t, b))

−(Dα−1u(t, a))′F0(t)(Dα−1u(t, a))
]
≥ 0.

(15)

with F : R≥0 × (a, b) → Snα , nα =
∑n
k=1 αk,

Fi(t) : R≥0 → Snα−1 , nα−1 =
∑n
k=1(αk − 1), i = 0, 1 and

the dependent variable u satisfying

u ∈ Us(Q) :=

{
u | Q

[
Dα−1u(t, b)
Dα−1u(t, a)

]
= 0

}
, (16)

where Q ∈ Rnα×2nα. In the following, we show how
to account for (16) when solving (15). The lemma below
establishes a relation between the values at the boundary
u(t, b) and u(t, a) and the integrand and is a straightforward
application of the Fundamental Theorem of Calculus. It will
be used to introduce extra terms in the integral in (15).
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Lemma 1: Consider a matrix function H(t, x) ∈ C1[x],
H : R≥0 × (a, b)→ Snα−1 . We have∫ b

a

d

dx

[
(Dα−1u)′H(t, x)(Dα−1u)

]
dx

=
∫ b
a

(Dα−1u)′ ∂H(t,x)
∂x (Dα−1u)

+ 2(Dα−1u)′H(t, x)(Dαu) dx
= (Dα−1u(t, b))′H(t, b)(Dα−1u(t, b))

− (Dα−1u(t, a))′H(t, a)(Dα−1u(t, a)).

(17)

In order to write terms in (17) in a compact form, define the
matrix function H̄(x) ∈ C1[x], H̄ : R≥0 × (a, b) → Snα to
be the matrix satisfying

(Dαu)′H̄(t, x)(Dαu)

:= (Dα−1u)′
[
∂H(t, x)

∂x
(Dα−1u) + 2H(t, x)(Dαu)

]
.

(18)

At this stage, we are ready to present conditions to verify
inequality (15) for u satisfying (16). Let T ≥ 0.

Proposition 1: Consider integral inequality (15). If there
exist a matrix polynomial H(t, x) and a matrix polynomial
H̄(t, x) as defined in (18) such that

F (t, x) + H̄(t, x) ≥ 0, ∀t ∈ [0, T ], x ∈ (a, b), (19)

and

(Dα−1u(t, b))′ (H(t, b) + F1(t)) (Dα−1u(t, b))

− (Dα−1u(t, a))′ (H(t, a) + F0(t)) (Dα−1u(t, a)) ≤ 0,

∀u ∈ Us(Q) (20)

then F ≥ 0 for all u ∈ Us(Q) and t ∈ [0, T ].
Proof: The proof follows the same lines as the proof of

Theorem 1 in [10] and is omitted here due to lack of space.

2) Barrier Functionals as Integral Functionals: Note that
the method described in the previous subsection requires the
problem data to be polynomial. Furthermore, in Theorem 2
and Corollary 1 the only assumption on the barrier functional
was B(t, u(t, x)) ∈ C1[t], however, in order to provide a
computational formulation based on SDPs, we consider the
following structure for the barrier functionals

B(t, u(t, x)) =

∫
Ω

b(t, x, u, ∂xu, ∂
2
xu) dx, (21)

with b ∈ R[t, x, u, ∂xu, ∂
2
xu], that is, B(t) : u 7→∫

Ω
b(t, x, u, ∂xu, ∂

2
xu) dx as in (7).

Then, in order to solve the associated integral inequalities
with SDPs, we assume that f, g ∈ R[s,X] as in (1), c, h ∈
R[t, x] as in (2) and q ∈ R[x] as in (2).

We consider the following undesirable set

Yu =

{
u ∈ U |

∫
Ω

pi(t, x, u, ∂xu, ∂
2
xu) dx ≤ 0,∫

Ω

p̃j(t, x, u, ∂xu, ∂
2
xu) dx = 0, (i, j) ∈ Iu × Ju

}
, (22)

where {pi : C1
(
R≥0 × Ω× R3n;R

)
}i∈Iu and {p̃j :

C1
(
R≥0 × Ω× R3n;R

)
}j∈Ju , Iu, Ju ⊂ N≥0 are index sets.

For the set of terminal or initial conditions in the form of
(8), we just need to substitute u(T, x) = q(x) in the barrier
functional, i.e.,

B(T, u(T, x)) =

∫
Ω

b
(
T, x, q(x), ∂xq(x), ∂2

xq(x)
)

dx.

Under the above assumptions, the conditions of Theo-
rem 2, and Corollary 1 become integral inequalities with
polynomial integrands, which are required to hold in sets
defined by integral inequality constraints. For example, sub-
stituting (21) in (9a) yields∫

Ω

b
(
t0, x,D

2u(t0, x)
)

dx

−
∫

Ω

b
(
T, x,D2u(T, x)

)
dx > 0,

∀u(t0, x) ∈ Yu, (23)

The following Theorem is instrumental in solving con-
strained inequalities similar to (23).

Theorem 3 (S-Procedure for Integral Inequalities):
Consider the following integral inequality∫ b

a

f(t, x,Dψ1u) dx ≥ 0, (24)

subject to

u ∈ U ′ =

{
u |
∫ b

a

g1(t, x,Dψ2u) dx ≤ 0,

∫ b

a

g2(t, x,Dψ2u) dx = 0

}
, (25)

where f ∈ R[t, x,Dψ1u], and g1, g2 ∈ R[t, x,Dψ2u]. Let

vi(t, x) =

∫ x

a

gi(t, x,D
ψ2u) dx, i = 1, 2, (26)

satisfying 
v1 (t, a) = 0,

v1 (t, b) ≤ 0,

v2 (t, a) = 0,

v2 (t, b) = 0.

(27)

If there exist F (t, x) ∈ R[t, x], and N(t, x) ∈ R[t, x] such
that∫ b

a

(
f(t, x,Dψ1u)

+ F (t, x)
(
∂xv1(t, x)− g1(t, x,Dψ2u)

)
+N(t, x)

(
∂xv2(t, x)− g2(t, x,Dψ2u)

))
dx ≥ 0 (28)

then (24) holds subject to (25).
After applying Theorem 3, inequality (28) should be

checked via the result in Proposition 1.
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Promoter
Gene

Y ∅
a(y)

δ

DNA

Protein

Fig. 1: Diagram of negative autoregulation, modelled in (29).
The red barred line represents the repressive behaviour of the
protein Y on the transcription of the gene.

TABLE I: Parameters to simulate negative autoregulation.

Param. Val. Param. Val.
α 20nMs−1 δ 0.025min−1

K 200nM−2 n 2

IV. CASE STUDY: NEGATIVE AUTOREGULATION

In the following, a model of negative autoregulation is
developed using standard principles. Then, using the method
developed in Section III, we bound a functional of the second
moment.

A. The Model

This section will begin with the construction of a standard
single state model of negative autoregulation [23]. The mech-
anisms included are: 1) the expression of a gene producing
a protein, 2) the dilution and degradation of protein, and 3)
the interaction between protein and DNA that accounts for
the negative autoregulation.

Using standard techniques [23], the following ODE model
of negative autoregulation can be constructed:

dy

dt
= a(y)− δy, (29)

where y is the concentration of expressed protein, a(y) is
the expression rate, which is dependent on y. Also, δ is
dilution and degradation rate of the protein. It is through the
expression rate a(y) that the feedback occurs. The interaction
between gene and protein and its effect on transcription is
modelled using the classic Hill Function a(y) = α/(1 +
Kyn), where α is the maximal expression rate, K accounts
for the affinity between the gene and the protein and n is
the Hill Coefficient. This system is presented in Figure 1.

Typical parameters used to simulate the system are pre-
sented in Table I and we use these values in the following.
More information on modelling gene regulatory networks is
available in [23]. System (29) has a steady state at y∗ =
1.5864nM, which was obtained in MATLAB by setting the
left hand side of (29) to zero.

In order to account for the biochemical noise affecting the
system, we consider a stochastic version of the system pre-
sented in (29). We follow the methodology given in [24] and,
instead of introducing additive noise, we consider multiplica-
tive noise originating from intrinsic biological fluctuations.

time (mins)
0 50 100 150 200

Y
(t
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 2: Five trajectories of SDE (30) starting at Y = y∗.

The SDE model is described as follows

dY =

(
α′y

1 +KY n
− δyY

)
ds+

√
α′y

1 +KY n
dW1

−
√
δyY dW2, s ∈ [t, T ], (30)

where W1 and W2 are two independent Wiener processes. It
can be observed that, although y∗ = 1.5864nM is a stationary
solution to the deterministic system (29), system (30) is sub-
ject to stochastic fluctuations around this stationary solution.
This phenomenon tallies with experimental data [14], [15].
Fig. 2 shows five different solutions of SDE (30) starting at
Y = y∗.

B. Bounding the Second Moment

We are interested in finding bounds on the second moment
of Y , as it allows us to compare computational estimates of
the noise with experimental data. To this end, we consider (2)
with c = 0, h = 1

2T y
2 and q = y2

2 . Then the corresponding
backward PDE is given by

−∂tu(t, y) =

(
α′y

1 +Kyn
− δyy

)
∂2
yu(t, y)

+

(
α′y

1 +Kyn
− δyy

)
∂yu(t, y) +

y2

2T
,

u(T, y) =
y2

2
, t ∈ [0, T ], y ∈ Ω. (31)

We assume Ω is chosen such that for all s ∈ [0, T ], Y (s) ∈ Ω
(see Remark 2). In this case, based on 5000 Monte Carlo
simulations of (30), Ω = [0, 10nM] satisfies this requirement
for T = 300mins. From Theorem 1, we have

u(t, y) =
1

2
E

{
1

T

∫ T

t

Y 2(s) ds+ Y 2(T ) | Y (t) = y

}
.

(32)
The boundary conditions are set to u(t, 0) = u(t, 10) = 0.
Next, we find bounds on the following functional

u(0, y∗) =
1

2
E

{
1

T

∫ T

0

Y 2(s) ds+ Y 2(T ) | Y (0) = y∗
}
,

(33)
i.e., the average plus the terminal cost of the second moment
around the stationary solution. In order to find bounds
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TABLE II: Obtained bounds on functional (33).

deg(b(t, y)) 2 4 6 8
bound (nM2) 8.7401 6.3642 4.4562 3.3791

Time (mins)
0 50 100 150 200 250 300

1 2
E

{

Y
2
(T

)
+

1 T

∫
T 0
Y

2
(τ
)
d
τ
|
Y
(0
)
=

y
∗

}
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2

2.2

2.4
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3.4

Fig. 3: The evolution of the cost functional (32) with T =
300 obtained from 5000 Monte Carlo simulations.

on the above functional, we consider the following barrier
functional

B (t, u(t, y)) =

∫
Ω

(1 +Kyn)b(t, y)u2(t, y) dy. (34)

Notice with this choice of barrier functional both inequali-
ties (9a) and (9b) are integral inequalities with polynomial
integrands. Based on Theorem 2 and solving optimisation
problem (14), we obtain the bounds given in Table II, where
deg(b(t, y)) is the degree of the certificate b(t, y) in t and y.
For degree 8, we found a bound of u(0, y∗) ≤ 3.3791.

This is consistent with the result obtained from 5000
Monte Carlo simulations as illustrated in Fig. 3, where the
value for u(0, y∗) from Monte Carlo simulations is 3.3417.

Employing the bound on the second moment of
3.3791nM2 and the mean steady state value of the system of
y∗ = 1.5864nM, the coefficient of variance was calculated
to be vc = 0.5854. Looking at [15], page 5, Fig. 4D ‘TG-nf’,
which shows coefficient of variance data from experiments
on a system equivalent to the one studied here, the values
are in close agreement.

V. CONCLUSIONS

We proposed a method for bounding state functionals of
a class of nonlinear stochastic systems based on barrier
functionals. The method can be cast as solving SDPs in
the case of polynomial data. The method was applied to a
stochastic model of negative autoregulation. It was shown
that the resulting bound on the second moment yielded a
coefficient of variance that closely mirrored experimental
data. The Gillespie algorithm [1], which is commonly used to
model such processes can provide estimates of moments, but
these are never bounded with certificates. Further application
of such techniques to more complete and complex models
of biological systems of more than one state would be a
powerful tool in the study of these systems. It would allow
for more accurate prediction of stochastic behaviour and
yield further insight into the relative roles of the various

modelling techniques employed in fields such as systems and
synthetic biology.
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