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Abstract

We study the safety verification problem for a class of distributed parameter systems

described by partial differential equations (PDEs), i.e., the problem of checking whether

the solutions of the PDE satisfy a set of constraints at a particular point in time. The

proposed method is based on an extension of barrier certificates to infinite-dimensional

systems. In this respect, we introduce barrier functionals, which are functionals of the

dependent and independent variables. Given a set of initial conditions and an unsafe

set, we demonstrate that if such a functional exists satisfying two (integral) inequalities,

then the solutions of the system do not enter the unsafe set. Therefore, the proposed

method does not require finite-dimensional approximations of the distributed param-

eter system. Furthermore, for PDEs with polynomial data, we solve the associated

integral inequalities using semi-definite programming (SDP) based on a method that

relies on a quadratic representation of the integrands of integral inequalities. The pro-

posed method is illustrated through examples.
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1. Introduction

Many real-world engineering systems are described by partial differential equation

(PDE) models, which include derivatives with respect to both space and time. For

example, mechanics of fluid flows [1], dynamics of spatially inhomogeneous robot

swarms [2], and the magnetic flux profile in a tokamak [3] are all described by PDEs.5

However, compared to systems described by ordinary differential equations (ODEs),

the analysis of PDE systems is more challenging. For instance, the solutions to PDEs

belong to infinite dimensional (function) spaces, where the norms are not equivalent,

as opposed to Euclidean spaces for ODEs. Hence, properties such as stability [4] and

input-output gains [5] may differ from one norm to another.10

One interesting and unresolved problem in the analysis of PDEs is safety verifi-

cation. That is, given the set of initial conditions, check whether the solutions of the

PDE satisfy a set of constraints, or, in other words, whether they are safe with respect

to an unsafe set. Reliable safety verification methods are fundamental for designing

safety critical systems, such as life support systems [6] and wind turbines [7]. The15

safety verification problem is well-studied for ODE systems (see the survey paper [8]).

Methods based on the approximation of the reachable sets are considered in [9] for lin-

ear systems and in [10] for nonlinear systems. Another method for safety verification,

which does not require the approximation of reachable sets, uses barrier certificates.

Barrier certificates [11] were introduced for model invalidation of ODEs with poly-20

nomial vector fields and have been used to address safety verification of nonlinear and

hybrid systems [12] and safety analysis of time-delay systems [13]. Exponential bar-

rier functions were proposed in [14] for finite-time regional verification of stochastic

nonlinear systems. Moreover, compositional barrier certificates and converse results

were studied in [15] and [16, 17], respectively.25

The application of barrier certificates goes beyond just analysis. Inspired by the

notion of control Lyapunov functions [19] and Sontag’s formula [20], Weiland and

2



Allgöwer [18] introduced control barrier functions (CBFs) and formulated a controller

synthesis method that ensures safety with respect to an unsafe set. This has sparked

several subsequent studies on control barrier functions [21, 22].30

In this paper, we study the safety verification problem for PDEs using barrier cer-

tificates. The proposed method employs a functional of the dependent and independent

variables called the barrier functional. We show that the safety verification problem can

be cast as the existence of a barrier functional satisfying a set of integral inequalities.

For PDEs with polynomial data, we demonstrate that the associated integral inequali-35

ties can be solved using semi-definite programming (SDP) based on the results in [23],

which were also used in [5] to solve dissipation inequalities for PDEs and in [24] for

input-output analysis of fluid flows. In this respect, we formulate an S-procedure-like

scheme for checking integral inequalities subject to a set of integral constraints. The

proposed method is illustrated by two examples.40

A preliminary application of the proposed method to bounding nonlinear output

functionals of nonlinear time-dependent PDEs was discussed in [25]. In this regard,

an scheme for bounding linear output functionals of linear stationary PDEs using SDPs

was presented in [26] based on moment relaxation techniques. In addition, a moment-

relaxation-based method was formulated in [27] to find smooth approximations of the45

solutions to nonlinear stationary PDEs using a finite-difference discretization of the

domain and maximum entropy estimation.

This paper is organized as follows. In the next section, we present some preliminary

definitions. In Section 3, we describe a method based on barrier functionals for safety

verification of PDEs. In Section 4, we discuss the computational formulation of the50

barrier functionals method and describe an scheme for verifying integral inequalities

subject to integral constraints. We illustrate the proposed results using two examples

in Section 5 and conclude the paper in Section 6.

Notation: The n-dimensional Euclidean space is denoted by Rn and the set of

nonnegative reals by R≥0. The n-dimensional set of positive integers is denoted by

Nn, and the n-dimensional space of non-negative integers is denoted by Nn≥0. We use

M ′ to denote the transpose of matrix M . The set of real symmetric matrices is denoted

Sn = {A ∈ Rn×n | A = A′}. The ring of polynomials on a real variable x is denoted
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R[x], and, for f ∈ R[x], deg(f) denotes the degree of f in x. A domain Ω is an open

subset of Rn and the boundary of Ω is denoted ∂Ω. The space of k-times continuous

differentiable functions defined on Ω is denoted by Ck(Ω) and the space of Ck(Ω)

functions mapping to a set Γ is denoted Ck(Ω; Γ). For a multivariable function f(x, y),

we use f(x, ·) ∈ Ck[x] to denote the k-times continuous differentiability of f with

respect to variable x. If p ∈ C1(Ω), then ∂xp denotes the derivative of p with respect

to variable x ∈ Ω. In addition, we adopt Schwartz’s multi-index notation. For u ∈

Cα(Ω;Rm), Ω ∈ Rn, α ∈ N≥0, defining matrix A ∈ Nσ(m,α)×n
≥0 , σ(n, α) = (n+α)!

n!α!

(denote its ith row Ai) which contains a set of ordered elements satisfying ΣjAij ≤ α,

we have

Dαu :=
(
u1, ∂xu1, . . . , ∂

Aσ
x u1, . . . , um, ∂xum, . . . , ∂

Aσ
x um

)
,

where ∂Aix (·) = ∂Ai1x (·) · · · ∂Ainx (·). We use the same multi-index notation to denote

a vector of monomials up to degree α on a variable x as ηα(x). For instance, for55

x ∈ R2, η2(x) = (1, x1, x2, x
2
1, x1x2, x

2
2). The Hilbert space of functions defined

over the domain Ω with the norm ‖u‖Wp
Ω

=
(∫

Ω

∑p
i=0(∂xiu)′(∂xiu) dx

) 1
2 is denoted

Wp
Ω. By f ∈ L2(Ω; Γ), we denote a square integrable function mapping Ω ⊆ Rn to

Γ ⊆ Rm. Also, for an operator A , Dom(A ) and Ran(A ) denote its domain and

range, respectively. The notation d·e denotes the ceiling function.60

2. Preliminaries

In this section, we present some definitions and preliminary results. We study a

class of forward-in-time PDE systems. Let U be a Hilbert space. Consider the follow-

ing differential equation



∂tu(t, x) = Fu(t, x), x ∈ Ω ⊂ Rn, t ∈ [0, T ],

y(t) = H u(t, x)

u(0, x) = u0(x) ∈ U0 ⊂ Dom(F )

u ∈ Ub

(1)
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where Ub is a subspace of U , the state-space of system (1), defined by the boundary

conditions, H : U → R and Dom(H ) ⊇ U , the state-space of system (1). It is as-

sumed that (1) is well-posed. Appendix A reviews some aspects of the well-posedness

of PDEs. While these results are important, studying the well-posedness of system (1)65

is beyond the scope of the current paper.

We call the set

Yu =
{
u ∈ U |H u ≤ 0

}
,

the unsafe set.

Consider the following properties of trajectories related to an initial set U0 and an

unsafe set Yu.

Definition 2.1 (Safety at Time T ). Let u ∈ U . For a set U0 ⊆ U , an unsafe set Yu,70

satisfying U0 ∩ Yu = ∅, and a positive scalar T , system (1) is Yu-safe at time T , if the

solutions u(t, x) of system (1) satisfy y(T ) /∈ Yu for all u(0, x) ∈ U0.

Definition 2.2 (Safety ). System (1) is Yu-safe, if it is safe with respect to Yu in the

sense of Definition 2.1 for all T > 0.

We are interested in solving the following problem:75

Problem 2.3. Given sets Yu, U0 and a constant T > 0, verify that system (1) is Yu-

safe at time T .

To this end, we define a time-dependent functional of the states of the PDE and

time

B(t, u) = B(t)u, (2)

where B(t) : Dom(B) → R. We refer to this functional as the barrier functional.

Note that this extension of barrier certificates [11] enables us to address sets that are

defined on infinite-dimensional spaces. In the subsequent section, we show that the80

barrier functional provides the means to characterize a barrier between the set of initial

conditions and the unsafe set.
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3. Barrier Functionals for Safety Verification of PDEs

In this section, we present conditions to obtain certificates that trajectories starting

in the set U0 are Yu-safe at a particular time instant T . Such a formulation also allows85

obtaining performance estimates whenever the unsafe set represents a performance in-

dex.

Next, we provide a solution to Problem 2.3 based on the construction of barrier

functionals satisfying a set of inequalities.

Theorem 3.1 (Safety Verification for Forward PDE Systems). Consider the PDE sys-

tem described by (1). Let u ∈ Ub. Given a set of initial conditions U0 ⊆ Ub, an unsafe

set Yu, such that U0∩Yu = ∅, and a constant T > 0, if there exists a barrier functional

B(t, u(t, x)) ∈ C1[t] as in (2), such that the following inequalities hold

B(T, u(T, x))−B(0, u0(x)) > 0, ∀u(T, x) ∈ Yu, ∀u0 ∈ U0, (3a)

dB(t, u(t, x))

dt
≤ 0, ∀t ∈ [0, T ], ∀u ∈ Ub, (3b)

where d(·)
dt denotes the total derivative, along the solutions of (1), then the solutions90

of (1) are Yu-safe at time T (cf. Definition 2.1).

Proof:. The proof is by contradiction. Assume there exists a solution of (1) such that,

at time T , u(T, x) ∈ Yu and inequality (3a) holds. From (3b), it follows that

dB(t, u(t, x))

dt
≤ 0, (4)

for all t ∈ [0, T ], and u ∈ U . Integrating both sides of (4) with respect to t from 0 to T

yields ∫ T

0

dB(t, u)

dt
dt = B(T, u(T, x))−B(0, u(0, x)) ≤ 0.

for all u ∈ U . This contradicts (3a). �

Remark 3.2. The level sets of B(t, u(t, x)) − B(0, u0(x)) represent barrier surfaces

in the U space separating U0 and Yu such that no solution of (1) starting from U0 is
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t0

‖u‖Hq
Ω Yu

T

U0

B(t, u(t, x))−B(0, u0(x)) = 0

Figure 1: Illustration of a barrier functional for a PDE system: any solution u(t, x) with u(0, x) ∈ U0

(depicted by the shaded area) satisfies u(T, x) /∈ Yu. The system is Yu-safe at time t = T but not for
∀t > 0.

in Yu at time T (hence, the term “barrier functional”). This property is illustrated in95

Figure 1.

Theorem 3.1 is concerned with conditions for safety verification with respect to the

unsafe set Yu at a particular time T > 0. The next corollary follows from Theorem 3.1

and gives conditions for safety verification with respect to an unsafe set Yu for all time

t > 0. In this case, the barrier functional can be independent of t.100

Corollary 3.3. Consider the PDE system described by (1). Assume u ∈ Ub. Given

an unsafe set Yu ⊂ U , such that U0 ∩ Yu = ∅, if there exists a barrier functional

B(u(t, x)) as in (2) such that

B(u(t, x))−B(u0(x)) > 0, ∀u ∈ Yu, ∀u0 ∈ U0, (5a)

dB(u(t, x))

dt
≤ 0, ∀u ∈ U , (5b)
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along the solutions of (1), then the solutions of PDE (1) areYu-safe (cf. Definition 2.2).

Proof:. The proof follows the same lines as the proof of Theorem 3.1. Assume that

there exists a solution u(t, x) to (1) such that, for some t > 0, we have u(t, x) ∈ Yu.

Then, from (5a), it follows that B(u(t, x)) − B(u0(x)) > 0. On the other hand,

integrating inequality (5b) from 0 to t implies that B(u(t, x))−B(u0(x)) ≤ 0, which105

is a contradiction. Thus, since t is arbitrary, the solutions to (1) are Yu-safe for all time.

�

We conclude this section by illustrating Corollary 3.3 with an analytical example

that uses a barrier functional to bound a performance index.

Example 3.4. (Performance Bounds) Consider the heat equation defined over a do-

main Ω ⊂ R2 with smooth boundary

∂tu = ∆u, x ∈ Ω, t > 0, (6)

subject to boundary conditions u|∂Ω = 0 and

u(0, x) ∈ U0 =

{
u0 ∈ U |

∫
Ω

|∇u0|2 dΩ ≤ 1

}
. (7)

where ∆ is the Laplacian operator. The output mapping is given by

y(t) = γ2 −
∫

Ω

u2 dΩ,

where γ ≥ 0. Then, the unsafe set is described asYu =
{
u ∈ U | y(t) = γ2 −

∫
Ω
u2 dΩ < 0

}
.110

We are interested in finding the minimum γ such that no solution of (6) enters Yu for

all u(0, x) ∈ U0.

We consider the barrier functional (2) with

B : W1
Ω → R≥0

u 7→
∫

Ω
(∇u)′∇u dΩ,

that is, B(u(t, x)) =
∫

Ω
(∇u)′∇u dΩ. We first check inequality (5b) along the solu-
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tions of (6):

dB(u(t, x))

dt
=

∫
Ω

2∇u∂t (∇u) dΩ = 2 (∇u∂tu) |∂Ω − 2

∫
Ω

∆u∂tu dΩ

= −2

∫
Ω

(∆u)
2

dΩ ≤ 0,

where, in the second equality above, integration by parts and, in the third equality, the

boundary conditions are used. Thus, inequality (5b) is satisfied. At this point, let us

check inequality (5a). We have115

B(u(t, x))−B(u0) =

∫
Ω

|∇u|2 dΩ−
∫

Ω

|∇u0|2 dΩ ≥
∫

Ω

|∇u|2 dΩ− 1

≥ C(Ω)

∫
Ω

u2 dΩ− 1,

where u0 ∈ U0 as in (7) is applied to obtain the first inequality, C(Ω) > 0, and

the Poincaré inequality [28] is used in the second inequality. Then, it follows that

whenever γ2 > 1
C(Ω) , we have B(u(t, x))− B(u0) > 0, and thus, from Theorem 3.1,

system (6) is Yu-safe. Therefore, it holds that y /∈ Yu, which implies y(t) = γ2
min −∫

Ω
u2 dΩ ≥ 0, i.e., γ2

min ≥
∫

Ω
u2 dΩ, where γ2

min = 1
C(Ω) . For example, whenever120

Ω = {(x, y) ∈ R2 | |x+ y| < 1}, we obtain γ2 = 2
π2 .

4. Construction of Barriers Functionals

In this section, we study a specific class of barrier functionals and particular sets

U0 and Yu, for which the inequalities (3) become integral inequalities. For the case

of polynomial data, the verification of the inequalities can be cast as constraints of an125

SDP. Furthermore, we set Ω = (0, 1). Note that any bounded open subset of the real

line can be mapped into this domain1.

In the previous sections, the barrier functionals were only assumed to be continu-

1A domain (a, b) can be mapped to (0, 1) by the following change of variables

x̄ =
x− a
b− a

.
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ously differentiable with respect to time. In order to present computational tools based

on SDPs, hereafter we assume that the barrier functional takes the form of an integral130

functional.

5. Verifying Integral Inequalities with Integral Constraints

In order to check inequalities (3) and (5) based on the method proposed in [23],

we require verifying an integral inequality subject to a number of integral constraints.

That is, we need to solve the following class of problems135

∫ 1

0
fi(t, x,D

αu) dx ≥ 0,

subject to∫ 1

0
si(t, x,D

αu) dx ≥ 0, i = 1, 2, . . . , r. (8)

where u : R≥0×Ω→ Rn, fi, si ∈ R[t, x,Dαu] and max(deg(si), deg(fi)) = k. Let

σ(n, k) := (n+k−1)!
(n−1)!k! . Then, we can represent fi and si as the following quadratic-like

forms

fi(t, x,D
αu) =

(
ηd

k
2 e(Dαu)

)′
Fi(t, x) ηd

k
2 e(Dαu)

si(t, x,D
αu) =

(
ηd

k
2 e(Dαu)

)′
Si(t, x) ηd

k
2 e(Dαu)

with Fi, Si : R≥0 × Ω→ Sσ(nα,d k2 e).

The approach we develop here is reminiscent of S-procedure [29] for LMIs. The

S-procedure provides conditions under which a particular quadratic inequality holds

subject to some other quadratic inequalities (for example, within the intersection of

several ellipsoids). Similar conditions for checking polynomial inequalities within a140

semi-algebraic set were developed in [30, 31] thanks to Putinar’s Positivstellensatz [32,

Theorem 2.14]. However, current machinery for including integral constraints includes

multiplying the integral constraint and subtracting it from the inequality (see Proposi-

tion 9 in [30]). In the following, we propose an alternative to the latter method that

can be used to verify the feasibility problem (8).145
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Consider the following set of integral constraints

S =

{
u ∈ Cα(Ω;Rn) |

∫
Ω

si(t, x,D
αu) dx ≥ 0, i = 1, 2, . . . , r

}
. (9)

Note that in this setting, we can also represent sets as
{
u |
∫

Ω
g(t, x,Dαu) dx = 0

}
by selecting s1 = g and s2 = −g.

Define

vi(t, x) :=

∫ x

0

si(t, x,D
αu) dx, (10)

satisfying vi(t, 0) = 0,

∂xvi(t, x)− si(t, x,Dαu(t, x)) = 0,

(11)

for i = 1, 2, . . . , r. Using (10), we can represent S as

S = {u ∈ CαΩ | vi(t, 1) ≥ 0, i = 1, 2, . . . , r} .

Lemma 5.1. Consider problem (8) and let t ∈ T ⊆ R≥0. Let v(t, x) = [ v1(t,x) ··· vr(t,x) ]
′

and s(x,Dαu) = [ s1(x,Dαu) ··· sr(x,Dαu) ]
′. If there exists a vector function m :

T × Ω→ Rr and a vector n ∈ Rr≥0 such that

∫ 1

0

fi(t, x,D
αu) dx−n′v(t, 1)+

∫ 1

0

m′(t, x)
(
∂xv(t, x)−s (t, x,Dαu(t, x))

)
dx > 0,

(12)

for all u ∈ U and all t ∈ T , then (8) is satisfied.

Proof:. From (11), we have that for any m : R≥0 × Ω→ Rr

m′(t, x) (∂xv(t, x)− s(t, x,Dαu(t, x))) = 0, ∀x ∈ Ω.

Hence, since v and u are related according to (11), we obtain

∫ 1

0

m′(t, x) (∂xv(t, x)− s(t, x,Dαu(t, x))) dx = 0.
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Consequently, if inequality (12) is satisfied, we infer

∫ 1

0

fi(t, x,D
αu) dx > n′v(t, 1), ∀t ∈ T .

Finally, since n′v(t, 1) ≥ 0, for all u ∈ S, we conclude that (8) holds. �150

Note that inequality (12) can be checked using the method discussed in [23]. In

order to incorporate the integral constraints, we introduced the (dummy) dependent

variables vi(t, x), satisfying (11), and their partial derivative with respect to x.

5.1. Computational Formulation

We impose the following structure for the barrier functionals

B(t, u) =

∫
Ω

(
ηd

k
2 e(Dαu)

)′
B̄(t, θ)

(
ηd

k
2 e(Dαu)

)
dθ (13)

where Ω = (0, 1), B̄ : R≥0 × Ω → Rσ(nα,d k2 e)×σ(nα,d k2 e), B̄(t, x) ∈ C1[t],∀x ∈ Ω,

and the following quadratic-like structures for the unsafe and the initial sets

Yu =

{
u ∈ U |

∫
Ω

(
ηd

k
2 e(Dαu)

)′
Y (t, θ)

(
ηd

k
2 e(Dαu)

)
dθ ≥ 0

}
, (14a)

and the set of initial conditions

U0 =

{
u0 ∈ U |

∫
Ω

(
ηd

k
2 e(Dαu)

)′
U0(t, θ)

(
ηd

k
2 e(Dαu)

)
dθ ≥ 0

}
. (14b)

where, Y : R≥0×Ω→ Rσ(nα,d k2 e)×σ(nα,d k2 e) andU0 : R≥0×Ω→ Rσ(nα,d k2 e)×σ(nα,d k2 e).155

The following proposition applies Lemma 5.1 to formulate integral inequalities to

verify the conditions of Theorem 3.1 considering barrier functional (13). In this case,

the constraint set S as defined in (9) is given by S = Yu ∪ U0, with the sets in (14)

defined as

s1(t, x,Dαu) =
(
ηd

k
2 e(Dαu)

)′
Y (t, x)

(
ηd

k
2 e(Dαu)

)
,

s2(t, x,Dαu) =
(
ηd

k
2 e(Dαu)

)′
U0(t, x)

(
ηd

k
2 e(Dαu)

)
. (15)
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Proposition 5.2. If there exist B̄ : [0, T ] × Ω → Rσ(nα,d k2 e)×σ(nα,d k2 e) or B(t, u)

as in (13), m : T × Ω → R2 and n ∈ R2
≥0 such that the following inequalities are

satisfied

B(T, u(T, x))−B(0, u0)− n′
[
v2(T,1)
v1(0,1)

]
+

∫
Ω

[
m2(T,θ)
m1(0,θ)

]′ [
∂θv2(T,θ)−s2(T,x,Dαu(T,θ))
∂θv(0,θ)−s1(0,x,Dαu0(θ))

]
dθ > 0, (16a)

with s1 and s2 as defined by (15) and v1 and v2 as defined by (10), and

∫
Ω

((
ηd

k
2 e(Dαu)

)′
∂tB̄(t, θ)

(
ηd

k
2 e(Dαu)

)
+ 2

(
ηd

k
2 e(Dαu)

)′
B̄(t, θ)∇

(
ηd

k
2 e(Dαu)

)′
∂t(D

αu)

)
dθ ≤ 0, (16b)

∀t ∈ [0, T ], ∀u ∈ U , then (3) holds.

A method to solve integral inequalities as (16) was proposed in [23] (also see [33]

for the formulation for Ω ⊂ R2). In the proposed method, the problem of checking

an integral inequality is cast as the problem of solving a differential linear matrix in-

equality. Such a formulation is possible thanks to the use of quadratic-like expressions160

as in (13), (14). Furthermore, it is demonstrated that, for polynomial data, the corre-

sponding differential matrix inequalities can be converted to a Sum-of-Squares (SOS)

program, which is then cast as an SDP. The numerical results presented in the next

section consider the problem data to be polynomial, i.e., the functions B̄, m, Y , U0

appearing in the inequalities of Proposition 5.2 are polynomials on variables t and x,165

and the operator F in (1) may be nonlinear and defined by a polynomial on u and its

spatial derivatives with coefficients that are polynomials on the spatial variables. The

formulation of the SDPs can be automated and a plug-in to SOSTOOLS [34] has been

developed.
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6. Examples170

We now illustrate the proposed results with two numerical examples. The first

example is associated with the option pricing problem from quantitative finance. The

second example concerns a diffusion-reaction-convection PDE. The numerical results

given in this section were obtained using SOSTOOLS v. 3.00 [35] and the associated

SDPs were solved using SeDuMi v.1.02 [36].175

6.1. Example 1: Option Pricing

Consider the following linear PDE

∂tu(t, s) =
σ2s2

2
∂2
su(t, s) + rs∂su(t, s)− ru(t, s), (t, s) ∈ [0, T ]× [0, s̄], (17)

which is the (forward) Black-Scholes equation for a non-dividend-paying stock (see

also [37, p. 331]). For the European call option the terminal and the boundary condi-

tions are given as 
u(T, s) = f(s) = max {s−K, 0} ,

u(t, 0) = 0,

u(t, s̄) = s̄,

where K > 0 is the strike price. Assuming the stock is at-the-money, f(s) = s −K.

The parameter values for a European call option [37, p. 338] are described as

T = 6/12 (years), K = $40,

r = 0.1, σ = 0.2.

We are interested in checking the safety of the solutions to (17) such that the average

option price 1
s

∫ s̄
0
u(T, s) ds does not exceed some price γ. Of course, a minimization

over γ gives us an estimate on the actual average option price. To this end, we define

To this end, we define

Yu =

{
u ∈ L1

[0,s̄] |
1

s̄

∫ s̄

0

u(0, θ) dθ − γ ≥ 0

}
.
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Table 1: Bounds on the average option price.

deg(b) 1 2 3 4 5 6
γ? 44.4285 26.1093 22.7489 19.5572 18.8264 18.2391

Consider the following barrier functional

B(t, u(t, x)) =

∫ s̄

0

b(t, θ)u2(t, θ) dθ.

where b ∈ R[t, θ]. Using Proposition 5.2 and a minimization over γ, we obtain the180

upper bounds on the average option price as given in Table 1. In these numerical exper-

iments, we set deg(b) = deg(m). The actual upper bound obtained from the solution

to (17) [38, p. 76] for the average option price is 18.227. As it can be observed from

the table, increasing the degree of the involved polynomials improves the accuracy of

γ?. The constructed barrier functional certificate of degree 6 is given in Appendix B.185

6.2. Diffusion-Reaction-Convection PDE

Consider the following nonlinear PDE

∂tu = ∂2
xu+ λu− 2u∂xu, x ∈ (0, 1), t > 0 (18)

where λ > 0, and u(t, 0) = u(t, 1) = 0. Due to the presence of a nonlinear convection

term, the solutions with λ ≥ π2 (otherwise unstable) may converge to a different

stationary solution. Figure 2 depicts a solution to PDE (18) with λ > π2.

We are interested in computing the maximum value for parameter λ, such that the

solutions starting in

U0 =

{
u0 |

∫ 1

0

(
u2

0 + (∂θu0)2
)

dθ ≤ 1

}
, (19)

which implies ‖u0‖H1
(0,1)
≤ 1, do not enter the set

Yu =

{
u |
∫ 1

0

(
u2 + (∂θu)2

)
dθ ≥ (6)2

}
,
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Figure 2: The solution to PDE (18) for λ = 1.2π2.

i.e., ‖u‖H1
(0,1)

≥ 6 for all t > 0. To this end, we consider the following barrier

functional structure

B(t, u(t, x)) =

∫ 1

0

[
u(t,θ)
∂θu(t,θ)

]′
M(θ)

[
u(t,θ)
∂θu(t,θ)

]
dθ, (20)

where M(θ) ∈ R2×2. Applying Corollary 3.3 and performing a line search for λ,190

the maximum parameter λ, for which the solutions are Yu-safe, is found to be λ =

1.196π2, for which the barrier functional (20) was constructed with a degree-16 M(θ)

as given in Appendix B. This is consistent with the numerical experiments shown in

Figure 3, where the H1
Ω-norm of the solution to PDE (18) with λ = 1.2π2 was com-

puted for four different initial conditions u0(x) ∈ U0 as in (19).195

7. Conclusion and Future Work

We developed a method based on barrier certificates for verifying whether the solu-

tions of a PDE are safe with respect to an unsafe set. Numerical examples illustrated the

computation of barrier functional certificates by SDPs for problems with polynomial

data and equations in one-dimensional spatial domain.200
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u0(x) = 2x2(1− x)2

u0(x) = 0.4x(ex − e)
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1
6
(1− cos(2πx))

u0(x) = ln(0.55x(1− x) + 1)

Figure 3: The evolution ofH1
(0,1)

-norm of solutions to (18) with λ = 1.2π2 for different initial conditions.
The red and green lines show the boundaries of Yu and U0, respectively.

Prospective research can consider bounding functionals of the states of nonlinear

stochastic differential equations (SDEs). A preliminary result in this direction has been

accepted for presentation at the 55th IEEE Conference on Decision and Control [39],

where a method for safety verification of backward-in-time PDEs is developed and used

to bound state functionals of SDEs thanks to the Feynman-Kac PDE. This method also205

has direct applications to optimal control of stochastic systems, wherein the Hamilton-

Jacobi-Bellman equation can be used.
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Appendix A. Well-posedness of PDE Systems

We briefly review some aspects related to the well-posedness of PDEs. In the case

where F is a linear operator, the well-posedness problem of (1) is tied to whether F

generates a strongly continuous semigroup denoted C0- Semigroup [40, Chapter 2.1].320

21



In this respect, the Hille-Yosida theorem [41, Theorem 3.4.1], [40, Theorem 2.1.12]

provides necessary and sufficient conditions for such generators. In addition, given an

operator, the Lumer-Phillips theorem [41, Theorem 3.4.5], [42], [42, Theorem 3.8.6]

presents conditions for the generator of a strongly continuous semigroup that are easier

to verify based on checking whether the operator is dissipative.325

If F is a nonlinear dissipative operator satisfying

Dom(F ) ⊂ Ran(I − λF ), ∀λ > 0,

with I representing the identity operator, then F generates a (nonlinear) semigroup of

contractions [43, Corollary 2.10]. In addition, uniqueness and existence of the solutions

to (1) follows from [43, Theorem 4.10 and Theorem 5.1].

Appendix B. Numerical Results

Neglecting the terms with coefficients smaller than 10−4, the constructed certificate

for Example 1 is given by

104b(t, θ) =− 7.916θ6 + 105.7θ5t+ 195.0θ5 − 315.15θ4t2

+ 175.7θ4t− 348.2θ4 − 35.99θ3t3 − 26.33θ3t

− 72.06θ3 + 42.64θ2t3 − 66.52θ2t2 + 203.8θ2t

− 228.9θ2 − 2.782θt5 − 4.065θt4 − 228.9θ2

− 2.782θt5 − 4.065θt4 − 1.184θt2 + 2.485θt

− 15.97θ − 631.9t6 + 62.17t5 − 162.0t4

+ 230.8t3 − 59.17t2 + 717.7t− 705.7.

Neglecting the terms with coefficients smaller than 10−4, the constructed certificate330

for Example 2 is given by

M(θ) =

M11(θ) M12(x)

M12(θ) M22(θ)

 ,
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104M11(θ) =− 12.96θ16 + 27.92θ15 − 55.38θ14 − 160.6θ13 − 222.4θ12 + 180.8θ11

+ 199.1θ10 + 332.9θ9 − 343.5θ8 − 454.9θ7 − 390.1θ6 + 329.9θ5

+ 666.7θ4 − 83.37θ3 − 663.4θ2 + 418.7θ − 74.97,

104M12(θ) =1.39θ16 − 26.03θ15 + 10.76θ14 + 22.53θ13 − 14.63θ12 − 22.81θ11

+ 52.28θ10 − 67.56θ9 − 69.45θ8 − 87.54θ7 + 79.37θ6 + 262.8θ5

− 32.63θ4 − 447.1θ3 + 417.7θ2 − 157.6θ + 23.88,

104M22(θ) =− 1.607θ16 − 26.85θ14 + 47.17θ13 + 38.69θ12 − 77.1θ11 − 34.36θ10

+ 66.47θ9 + 13.36θ8 − 34.57θ7 − 1.477θ6 + 17.13θ5

− 9.405θ4 + 2.768θ3.
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