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Abstract— We consider the problem of safety assessment
of a dynamical system for which no model and just limited
data on the states is available. That is, given samples of the
state {x(ti)}Ni=1 at time instances t1 ≤ t2 ≤ · · · ≤ tN and
some other side information in terms of the regularity of
the state evolutions, we are interested in checking whether
x(T ) /∈ Xu, where T > tN and Xu ⊂ Rn (the unsafe set)
are pre-specified. To this end, we use piecewise-polynomial
approximations of the trajectories based on the data along
with the regularity side information to formulate a data-driven
differential inclusion model. For these classes of data-driven
differential inclusions, we propose a safety assessment theorem
based on barrier certificates. The barrier certificates are then
found using polynomial optimization. The method is illustrated
by two examples.

I. INTRODUCTION

Emerging control applications, in particular concerned
with safety-critical systems, require system analysis and con-
troller synthesis methods that are resilient to abrupt system
changes. For instance, consider an unmanned aerial vehicle
flying on a specified trajectory. Due to external conditions,
such as a wind gust, severe damage is incurred to one of
the wings [1]. The dynamics of the aircraft after the incident
does not follow the equations of motions based on which
the system was initially designed. Hence, to preclude further
damage or safe landing, we require data-driven methods for
system analysis and control synthesis.

Recent studies have shown that certain physical laws, in
the form of differential equations, can be extracted from
data [2]. In particular, [3] studied the problem of finding
system dynamics when the system follows Lagrangian me-
chanics. Also, see [4] for a method that can extract chaotic
polynomial differential equations from noisy data and relies
on an ergodicity property of the data such that the central
limit theorem can be applied. However, these methods often
require large amounts of training data, which may not be
available, especially, after an abrupt change in a safety-
critical system.

In the control literature, system analysis based on input-
output data or input-state data is not new. System identifica-
tion techniques [5] have looked into the problem of finding
a model of the system based on data. Yet, the available
methods are either “data-hungry” or computationally expen-
sive (especially if they require a validation stage). Adap-
tive control techniques [6] also studied controller synthesis
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methods for systems in which the system model is known
up to a parametrization. Such parametrization of the system
dynamics is not often available in the case of an abrupt
system change.

Once an abrupt change in system dynamics occurs, one of
the fundamental issues to consider is to assess whether the
system behaves safely or whether the system avoids certain
unsafe behavior. If the system model is given, verifying
safety is a familiar subject to the control community [7],
[8], [9]. One of the methods for safety verification relies on
the construction of a function of the states, called the barrier
certificate that satisfies a Lyapunov-like inequality [9]. The
barrier certificates have shown to be useful in several system
analysis and control problems running the gamut of bounding
moment functionals of stochastic systems [10] to control of
a swarm of silk moths [11]. To the authors’ knowledge,
the only article that applied barrier certificates for system
analysis based on data is [12]. However, the latter method
requires large amounts of data, as well.

In this paper, we study safety assessment of systems
for which limited data (by limited, we imply N is not
large enough for determining the complete dynamics us-
ing a system identification or machine learning method)
is available. To this end, motivated by the recent works
on Whitney’s extension problem [13], we propose a data-
driven differential inclusion model of the system based on
the piecewise-polynomial approximation of the state data and
some regularity information on the evolution of system state.
Equipped with this data-driven model, we formulate a safety
assessment theorem based on barrier certificates for differ-
ential inclusions. The barrier certificates are then computed
using semi-definite programming (SDP). We illustrate the
proposed method using two numerical examples.

The paper is organized as follows. The next section
presents the notation and the some preliminary mathematical
definitions. In Section III, we present the data-driven differ-
ential inclusion model, propose a method based on barrier
certificates for safety assessment of differential inclusions
and describe a computational approach for finding barrier
certificates based on polynomial optimization. In Section IV,
we illustrate the proposed method by two examples. Finally,
Section V concludes the paper and provides directions for
future research.

II. PRELIMINARIES

Notation: The notations employed in this paper are rel-
atively straightforward. R≥0 denotes the set [0,∞). ‖ · ‖
denotes the Euclidean vector norm on Rn and 〈·〉 the inner
product. R[x] accounts for the set of polynomial functions



with real coefficients in x ∈ Rn, p : Rn → R and Σ ⊂ R is
the subset of polynomials with an SOS decomposition; i.e,
p ∈ Σ[x] if and only if there are pi ∈ R[x], i ∈ {1, . . . , k}
such that p = p2i + · · · + p2k. We denote by Cm(X), with
X ⊆ Rn, the space of m-times continuously differentiable
functions and by ∂m = ∂m

∂xm the derivatives up to order m.
For f ∈ Cm(X), we denote by ‖f‖Cm the Cm-norm given
by

‖f‖Cm = max
α≤m

sup
x∈X
|∂αf(x)|.

For f ∈ Cm(X) and x ∈ X , we denote by Jx(f) the mth
degree Taylor polynomial of f at x

Jx(f)(x′) =
∑
α≤m

∂αf(x)(x′ − x)α

α!
.

Note that Jx(f) ∈ R[x]. Finally, for a finite set A, we denote
by co{A} the convex hull of the set A.

A. Whitney’s Extension Problem

Whitney’s extension problem is concerned with the ques-
tion of whether, given data on a function f , i.e., {∂mfi}Ni=1

corresponding to {xi}Ni=1, one can find a Cm function that
approximates f .

Whitney’s classic problem can be described as follows.
Suppose we are given an arbitrary subset D ⊂ Rn and a
function f : D → R, how can we determine whether there
exists a function F ∈ Cm(Rn) such that F = f on D.

Whitney indeed addressed this problem for the case n = 1.
Theorem 1 (Whitney’s Extension Theorem [14]): : Let

E ⊂ Rn be a closed set, and let {Px}x∈E be a family of
polynomials Px ∈ R[x] indexed by the points of E. Then
the following are equivalent

A. There exists F ∈ Cm(Rn) such that Jx(F ) = Px for
each x ∈ E.

B. There exists a real number M > 0 such that

|∂αPx(x)| ≤M for |α| ≤ m, x ∈ E.
Recently Fefferman and collaborators [15], [16] consid-

ered a more general problem. That is, given {fi = f(xi)}Ni=1

corresponding to {xi}Ni=1, the problem of computing a
function F ∈ Cm(Rn) and a real number M ≥ 0 such that

‖F‖Cm ≤M, and |F (x)− f(x)| ≤Mσ(x), ∀x ∈ E.

The function σ : Rn → R≥0 is determined by the problem
under study and from ”observations”.

Computing such a function F in the general form is a
cumbersome task and amounts to computing sets containing
F [17], [18]. In this paper, instead of considering general
interpolants of data, we focus on piecewise-polynomial ap-
proximations for which construction algorithm are widely
available [19].

B. Piecewise-Polynomial Approximation: B-Splines

B-spline functions [20] have properties that make them
very suitable candidates for function approximation. They
can be efficiently computed in closed form based on available

algorithms [19]. They B-splines are widely employed in com-
puter graphics, automated manufacturing (CAM), data fitting,
computer graphics, and computer aided design (CAD) [21].

A pth degree B-spline curve, f(t), defined by n control
points and m = n+ p+ 1 knots t̂, is given by

f(t) =

n∑
i=1

βiQi,p(t) (1)

Knot vectors are sets of non-decreasing real numbers. The
spacing between knots defines the shape of the curve along
with the control points.

Function Qi,p(t) is called ith B-spline basis function of
order p and it can be described by the recursive equations

Qi,0(t) =

{
1 t ∈ [t̂i, t̂i+1)

0 else
(2)

and

Qi,p(t) =
t− t̂i

t̂i+p − t̂i
Qi,p−1(t)

+
t̂i+p+1 − t

t̂i+p+1 − t̂i+1

Qi+1,p−1(t). (3)

defined using the Cox-de Boor algorithm [19]. First order
basis functions are evaluated using equation (2), followed by
iterative evaluation of (3) until the desired order is reached.
In contrast to Bézier curves, the number of control points of
the curve, n, is independent of the order, p . This provides
more robustness for the generated paths topology.

Furthermore, the derivative of a B-spline of degree p, Qi,p,
is simply a function of B-splines of degree p− 1. That is,

dQi,p(t)

dt
= (p − 1)

(
−Qi+1,p−1

ti+p − ti+1
+

Qi,p−1
ti+p−1 − ti

)
(4)

At this stage, we are ready to present the main results of
this paper.

III. MAIN RESULTS

A. Data-Driven Differential Inclusions

We are given {x(ti)}Ni=1, samples of the state at time
instances t1 ≤ t2 ≤ · · · ≤ tN . That is, only samples
of the states are available. This often the case in practical
engineering applications. Denote by X(t) the approximation
of x(t) based on the observations {x(ti)}Ni=1.

In this study, we consider state evolutions that belong to
C2(R≥0). Hence, ẋ(t) ∈ C1(R≥0).

We assume in addition to state samples, some prior reg-
ularity knowledge (side information) on the state evolutions
of the system are available in the form of

‖x‖C2 ≤M,

for a constant M > 0. In order to account for the uncertainty
in approximating ẋ with the function Ẋ , we introduce a
function σ : R≥0 → R≥0 such that

|Ẋ(t)− ẋ(t)| ≤Mσ(t).



In the case of piecewise-polynomial approximation of
the data, we have X(t) =

∑
i βiQi,p(t) and Ẋ(t) =∑

i βiQ̇i,p(t) which can be determined using (4).
Let Ẋ− = Ẋ(t)−Mσ(t) and Ẋ+ = Ẋ(t) +Mσ(t). The

dynamics of the system for t > tN can be described by the
following data-driven differential inclusion

ẋ(t) ∈ co
{
Ẋ−(t), Ẋ+(t)

}
,

x(tN ) = xN . (5)

Remark 1: Differential inclusion (5) in fact over-
approximates the dynamics after t > tN . Note that the
information on the system state is only available for 0 <
t < tN and the regularity information (M and σ) provides
the means using (5) to predict the behavior of system state.

We are interested in solving the following problem:

Problem 1: Consider the data-driven differential
inclusion (5). Given Xu ⊂ Rn and T > tN , check whether
x(T ) /∈ Xu.

Next, we discuss differential inclusions in the form of (5)
and we propose a safety assessment method based on barrier
certificates.

B. Barrier Certificates for Differential Inclusions

Let {fi(x, t)}mi=1, f : X × T → Rn with X ⊆ Rn, T ⊆
R≥0 and fi’s be (piecewise) smooth functions. Define

F(x, t) = co{f1(x, t), . . . , fm(x, t)}.

Consider the following differential inclusion

ẋ ∈ F(x, t), t ≥ t0
x(t0) = x0 (6)

Well-posedness conditions of differential inclusions [22,
Theorem 1, p. 106] require F to be closed and convex.
Since F is defined as the convex hull of a finite set, then
it is closed and convex. Furthermore, F is upper hemi-
continuous, because F =

∑m
i=1 αifi(x, t) with 0 ≤ αi ≤ 1,

i = 1, 2, . . . ,m and
∑m
i=1 αi = 1 and fi’s being smooth

functions. Furthermore, the mapping F(x, t) is one-sided
Lipschitz, i.e., it satisfies

(x1 − x2)T (F(x1, t)−F(x2, t)) ≤ C‖x1 − x2‖2, ∀t > 0,

for some C > 0 and all x1 and x2, which follows from the
fact that F is a convex hull of smooth and thus Lipschitz
functions.

We are interested in the problem of verifying whether we
can ensure that the trajectories of (6) avoid a specified unsafe
set Xu ⊂ Rn at some point in time T > t0. In this respect,
we first need to extend the concept of barrier certificates to
differential inclusions.

Before stating the theorem, we require a definition of the
derivative for set-valued maps. Denote by

D+V (x)(u) = lim inf
h→0+, v→u

V (x+ hv)− V (x)

h
,

the upper contingent derivative of V at x in the direction u.
In particular, when V is Gateux differentiable and F = {v}
is a singleton, D+V (x) coincides with the gradient

D+V (x)(v) = 〈∇V (x), v〉 .

Theorem 2: Consider differential inclusion (6) and let
T > t0. If there exist a B ∈ C1(Rn;R) ∩ C1(R≥0;R) and a
positive definite function W : L1(Rn×R≥0;R≥0) such that

B (x(T ), T )−B (x(t0), t0) > 0, x(T ) ∈ Xu, (7)

D+B(x, t)(v, 1) ≤ −W (x, t), t ∈ [t0, T ], v ∈ F(x, t),
(8)

then the solutions of (6) satisfy x(T ) /∈ Xu.
Proof: The proof is carried out by contradiction.

Assume it holds that x(T ) ∈ Xu. Then, (7) implies that

B (x(T ), T ) > B (x(t0), t0) .

Furthermore, using [23, Proposition 8, p. 289] and inequal-
ity (8), we can infer that

B(x(s), s)−B(x(t0), t0) ≤ −
∫ s

t0

W (x, τ) dτ ≤ 0.

That is,
B(x(s), s) ≤ B(x(tN ), tN ).

Since s was chosen arbitrary, this is a contradiction. Thus,
the solutions of (6) satisfy x(T ) /∈ Xu.

C. Safety Assessment for Data-Driven Differential Inclusions

In the following, we propose conditions for safety analysis
of the data-driven differential inclusion (5). In other words,
given the limited data over states up to some time tN and the
regularity information, we verify whether the system behaves
safely at a given time T > tN .

Corollary 1: Consider differential inclusion (5)
and let T > tN . If there exist a B ∈
C1
(
Rn;R) ∩ C1([tN ,∞);R

)
and a positive definite

function W : L1 (Rn × [tN ,∞); [tN ,∞)) such that

B (x(T ), T )−B (x(tN ), tN ) > 0, x(T ) ∈ Xu, (9)

D+B(x, t)
(
Ẋ−, 1

)
≤ −W−(x, t), t ∈ [tN , T ], (10)

D+B(x, t)
(
Ẋ+, 1

)
≤ −W+(x, t), t ∈ [tN , T ], (11)

then the solutions of (5) satisfy x(T ) /∈ Xu.
Proof: Inequality (9) ensures that (7) holds. Multiply-

ing both sides of inequality (10) a constant 0 ≤ α− ≤ 1
and inequality (11) a constant 0 ≤ α+ ≤ 1 such that
α− + α+ = 1 and adding them, we obtain

α−D+B(x, t)(Ẋ−, 1) + α+D+B(x, t)(Ẋ+, 1)

≤ −α−W−(x, t)− α+W+(x, t).

Since D+ is a linear operator, we have

D+B(x, t)(α−Ẋ− + α+Ẋ+, 1)

≤ −α−W−(x, t)− α+W+(x, t).



Let W (x, t) = min {W−(x, t),W+(x, t)}. We obtain

D+B(x, t)(α−Ẋ− + α+Ẋ+, 1)

≤ −α−W−(x, t)− α+W+(x, t)

≤ −(α− + α+)W (x, t) = −W (x, t).

That is,

D+B(x, t)(v, 1) ≤ −W (x, t), v ∈ co{Ẋ−, Ẋ+}.

Thus inequality (8) is also satisfied. This completes the proof.

D. Computational Method

In this section, we propose a computational method based
on polynomial optimization. For dynamical systems approx-
imated by piecewise-polynomials, we propose conditions
based on sum-of-squares (SOS) programs.

Assuming σ ∈ Σ[t], (5) becomes a differential inclusion
with polynomial vector fields.

The next Lemma, which is based on the application of
Putinar’s Positivestellensatz, presents conditions in terms of
polynomial positivity that can be efficiently checked via
SDPs [24] (see Appendix A for more details). Parsers such
as SOSTOOLs [25] can be used to cast the polynomial
inequalities into semidefinite programs and then solvers such
as Sedumi [26] can be used to solve the resultant SDPs.

Lemma 1: Consider the differential inclusion (5) and the
following semi-algebraic unsafe set

Xu = {x | li(x) ≤ 0, i = 1, 2, ..., nc}, (12)

where li ∈ R[x]. If there exist functions B ∈ R[x, t], W− ∈
Σ[x, t], W+ ∈ Σ[x, t], mi ∈ Σ[x, t], i = 1, 2, si ∈ Σ[x, t],
i = 1, . . . , nc and a positive constant c > 0, such that

B (x(T ), T )−B (x(tN ), tN )

+

nc∑
i=1

si (x(T )) li (x(T ))− c ∈ Σ [x(T )] (13)

and

− ∂B

∂t
−
〈
∂B

∂x
, Ẋ−

〉
−W−(x, t)

−m1(x, t)(t− tN )(t− T ) ∈ Σ[x, t], (14)

− ∂B

∂t
−
〈
∂B

∂x
, Ẋ+

〉
−W+(x, t)

−m2(x, t)(t− tN )(t− T ) ∈ Σ[x, t], (15)

then the solutions to (5) satisfy x(T ) /∈ Xu.
Proof: Applying Putinar’s Positivstellensatz, condi-

tion (13) implies that

B (x(T ), T )−B (x(tN ), tN ) > 0,

for all x(T ) ∈ Xu as in (12). Thus, inequality (9) holds.
Moreover, given the smoothness property of B, we have

D+B(x, t)
(
Ẋ−, 1

)
=
∂B

∂t
+

〈
∂B

∂x
, Ẋ−

〉
.

Hence, from condition (14), we have

D+B(x, t)
(
Ẋ−, 1

)
≤ −W−(x, t), t ∈ [tN , T ].

Therefore, inequality (10) is satisfied. In a similar manner,
we can show that (11) holds as well. Then, from Corollary 1,
the solutions to (5) satisfy x(T ) /∈ Xu.

IV. NUMERICAL RESULTS

In this section, we illustrate the proposed method using
two examples. The first example is a single state system for
which limited data is available and safety in a future time is
of interest. The second example is the 2-state Van der Pol
equation that exhibits a limit cycle.

A. Example I

We consider 20 samples of the solution to the following
differential equation

ẋ = 0.5x2 − 0.05x3,

x(0) = 1, (16)

in the interval 0 < t < 1.7 (see Figure 1). The regularity
information is given as ‖x‖C2 ≤ 5 and

|Ẋ(t)− ẋ(t)| ≤ 5,

which implies that M = 5 and σ(t) = 1. We use a cubic
piecewise-polynomial approximation of x(t). This can be
carried out readily by the spline function in MATLAB.

The unsafe set in this example is given by

Xu = {x ∈ R | x− 9 ≥ 0} .

The boundary of the unsafe set x = 9, the data points
{xi}20t=1 and the piecewise-polynomial approximation of the
state X(t) =

∑
i βiQi,p(t) are shown in Figure 1. As it

can be observed from the figure, since there exists an stable
equilibrium at x = 10, the solution of the actual system
converges to the equilibrium at t ≈ 3. However, since the
piecewise-polynomial approximation of the state is based on
the information up to t = 1.7, X(t) differs from x(t) as time
passes. Nonetheless, the data-driven differential inclusion (5)
provides an approximation of the state evolutions for t > 1.7.

In this example, we are interested in finding the maximum
T for which the solutions become unsafe, i.e., x(T ) ≥ 9. To
this end, based on Corollary 1, we increase the value of T
and look for a barrier certificate. We continue until no barrier
certificate can be found.

Table I provides the numerical results. Notice that the
actual system become unsafe at T = 2.66. However, due
to system uncertainty and limited data, the lower bound on
the unsafe set has been found to be T = 2.49 corresponding
to certificates of degree 6. The barrier certificate of degree
3 is given bellow

B(x, t) = −0.496t3 + 0.119t2x+ 0.0449t2 − 0.0383tx2

−0.5855tx− 0.8398t+ 0.1063x2 + 1.389x.



TABLE I: Numerical results for 20 samples and tN = 2.

deg 1 2 3 4 5 6
T 2.26 2.34 2.41 2.45 2.46 2.49

0 0.5 1 1.5 2 2.5 3
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4

6

8

10

Fig. 1: The boundary of the unsafe set x = 9 (red line), the
data points {xi}20t=1 (black circles), the piecewise-polynomial
approximation of the state X(t) (black dots) and the actual
solution of the system (solid blue).

B. Example II: Van der Pol Oscillator

We consider 40 samples of the states to the Van der Pol
differential equation

ẋ = y,

ẏ = 2(1− x2)y − x,
(x(0), y(0))

′
= (1,−2)′, (17)

in the interval 0 < t < 3.5 (see Figure 2). Notice that the
system exhibits a limit cycle. Near the origin, the system is
unstable, and far from the origin, the system is damped. We
consider the following regularity side information

‖x‖C2 ≤ 8, |Ẋ(t)− ẋ(t)| ≤ 8(t− 3.5)2,

which implies that M = 8 and σ(t) = (t−3.5)2. The unsafe
set is given by

Xu =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 2
}

We are interested in checking whether the system is safe
with respect to Xu at time T=4. Applying Corollary 1,
with certificates of degree 2, we were able to find a barrier
certificate. Hence, the system is safe at T = 4. This can
also be corroborated by the simulation results as depicted in
Figure 3. The constructed barrier certificate is given below

B(x, y, t) =− 7.1441t2 + 1.7154tx− 20.228ty

− 7.5293t− 3.0302x2 + 84.477xy

+ 5.306x+ 4.439y2 − 11.394y.
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Fig. 2: The data points {xi}40t=1 (black circles), the piecewise-
polynomial approximation of the state X(t) (black dots) and
the trajectories of the system (solid blue).
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Fig. 3: The data points {xi}40t=1 (black circles), the piecewise-
polynomial approximation of the state X(t) (black dots) and
the actual solution of the system (x solid blue and y solid
red).

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We considered the problem of safety assessment based
on limited data and some regularity information on system
states. We reformulated the problem into safety assessment of
differential inclusions and we proposed a safety assessment
theorem for differential inclusions based on barrier certifi-
cates. In the case of piecewise-polynomial approximations
of data, we showed that the barrier certificates can be found
by polynomial optimization. Two examples were used to
illustrate the proposed approach.



B. Future Work

The regularity side information used in this paper to obtain
the data-driven differential inclusions may be too restrictive
in the case of systems with less smoothness properties.
A formulation based on side information in the sense of
Lipschitz continuity can relax this constraint. Preliminary
works in this area are currently under development.

In this study, we assumed the measurements of the states
are not noisy. In many practical situations, this is not the case
and sensor measurements are subject to measurement noise,
say due to heat. In this setting, safety assessment requires
side information in the probabilistic sense. In this respect,
one can use notions such as spline smoothing [27].

Future research can study the controller synthesis frame-
work based on data-driven models. This would require an
extension of the notion of control barrier functions [28] to
the proposed data-driven differential inclusions.

The application of the proposed safety assessment results
in this paper are not only limited to data-driven differential
inclusions but also the discussions in Section III-C can be
used to tackle safety assessment of discontinuous and hybrid
systems, such as mechanical system with impact and Columb
friction [29].
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APPENDIX

A. Sum-of-Squares Polynomials

A polynomial p(x) is a sum-of-squares polynomial if
∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such that p(x) =

∑
i p

2
i (x).

Hence p(x) is clearly non-negative. A set of polynomials
pi is called SOS decomposition of p(x). The converse
does not hold in general, that is, there exist non-negative
polynomials which do not have an SOS decomposition [24].
The computation of SOS decompositions, can be cast as an
SDP (see [30], [24], [31]). The Theorem below proves that,
in sets satisfying a property stronger than compactness, any
positive polynomial can be expressed as a combination of
sum-of-squares polynomials and polynomials describing the
set.

For a set of polynomials ḡ = {g1(x), . . . , gm(x)}, m ∈ N,
the quadratic module generated by m is

M(ḡ) :=

{
σ0 +

m∑
i=1

σigi|σi ∈ Σ[x]

}
. (18)



A quadratic module M ∈ R[x] is said archimedean if ∃N ∈
N such that

N − |x|2 ∈M.

An archimedian set is always compact [32]. It is then
possible to state [33, Theorem 2.14]

Theorem 3 (Putinar Positivstellensatz): Suppose the
quadratic module M(ḡ) is archimedian. Then for every
f ∈ R[x],

f > 0 ∀ x ∈ {x|g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⇒ f ∈ (ḡ).
The subsequent proposition formalizes the problem of

constrained positivity of polynomials which is a direct result
of applying Positivstellensatz.

Proposition 1 ([34]): Let {ai}ki=1 and {bi}li=1 belong to
P , then

p(x) ≥ 0 ∀x ∈ Rn : ai(x) = 0, ∀i = 1, 2, ..., k

and bj(x) ≥ 0, ∀j = 1, 2, ..., l (19)

is satisfied, if the following holds

∃r1, r2, . . . , rk ∈ R[x] and ∃s0, s1, . . . , sl ∈ Σ[x]

p =
∑k
i=1 riai +

∑l
i=1 sibi + s0 (20)

Proposition 2: The multivariable polynomial p(x) is
strictly positive (p(x) > 0 ∀x ∈ Rn), if there exists a λ > 0
such that (

p(x)− λ
)
∈ Σ[x] (21)


