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Abstract— We propose a convex distributed optimization
algorithm for synthesizing robust controllers for large-scale
continuous time systems subject to exogenous disturbances.
Given a large scale system, instead of solving the larger
centralized synthesis task, we decompose the problem into
a set of smaller synthesis problems for the local subsystems
with a given interconnection topology. Hence, the synthesis
problem is constrained to the sparsity pattern dictated by the
interconnection topology. To this end, for each subsystem, we
solve a local dissipation inequality and then check a small-gain
like condition for the overall system. To minimize the effect
of disturbances, we consider the H∞ synthesis problems. We
instantiate the distributed synthesis method using accelerated
alternating direction method of multipliers (ADMM) with
convergence rate O( 1

k2 ) with k being the number of iterations.

I. INTRODUCTION

Large scale systems are ubiquitous in nature and engineer-
ing. Examples of such systems run the gamut of biochemical
networks [1] to smart grids [2]. The synthesis of control
laws for large scale systems, however, is fettered by several
challenges, despite the availability of well-known solutions
to the LQR, H2, and H∞ synthesis problem for linear
systems [3].

Conventional feedback synthesis techniques are imple-
mented in a centralized manner and often lead to con-
troller gains that require dense interconnection topology.
Such controllers require full communication between the
subsystems that may not be practical. Therefore, significant
research has been carried out in the literature to synthesize
controllers with a given sparsity pattern. In general, the linear
synthesis problem subject to a given sparsity pattern in the
controller is NP-hard [4]. However, explicit solutions for
special structures [5], [6], [7], convex relaxations [8], [9] and
sub-optimal non-convex methods [10], [11] were proposed in
the literature.

Furthermore, the computational cost of synthesizing cen-
tralized controllers become prohibitive for large scale sys-
tems. In the analysis domain, several attempts have been
made to decompose the centralized analysis problem us-
ing dissipativity theory based on the notion that if the
subsystems of an interconnected large scale system satisfy
some dissipativity property, the overall interconnected system
satisfies some stability or input-output property [12]. At the
expense of some degree of conservatism, [13], [14] propose
methods for analyzing large-scale dynamical systems by
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decomposing them into coupled smaller subsystems that
are significantly simpler from a computational perspective.
Furthermore, distributed optimization techniques can be used
to carry out the computations in parallel. In [15], it was
demonstrated that one can study the stability of a large scale
system by checking a number of dissipation inequalities for
smaller local subsystems and then verifying a global gain
condition, where the dual decomposition technique was used.
Reference [16] gives a decompositional dissipativity analysis
methodology for a large scale system based on ADMM.

Distributed optimization methods such as ADMM [17] are
used to solve large-scale convex optimization problems by
decomposing them into a set of smaller problems. These
methods are most useful when interior-point methods do not
scale well due to solving of a large linear system on the order
of number of variables. However, these algorithms can be
very slow to converge to high accuracy, unlike interior-point
methods, where high accuracy can be attained in a reasonable
amount of iterations. To attain faster convergence to high
accuracy, accelerated versions of first order methods have
been proposed in the literature [18], [19], [20], [21], [22].
These methods achieve O( 1

k2 ) convergence rate after k iter-
ations, which is shown to be indeed optimal for a first order
method [23]. The main drawback of these approaches is, they
usually require the objective function to be differentiable,
which disallows constraints in the optimization problem.

In this paper, we consider large-scale systems with a given
interconnection topology. The interconnection topology of
the system dictates a sparsity pattern to the global con-
troller. Given this controller structure, we tackle the global
synthesis problem by synthesizing local controllers such
that some global system property, namely, stability or H∞
performance is guaranteed. To this end, we use a set of local
dissipation inequalities and adopt a block-diagonal global
Lyapunov function structure. This decomposes the global
synthesis problem into a number of smaller ones for local
subsystems. Moreover, for large scale problems, we provide
a computational formulation based on accelerated ADMM.
We use a smoothing approach [24], [25] to achieve a faster
convergence rate than the conventional ADMM. Specifically,
when the objective function is strongly convex, the ADMM
algorithm can be modified with an extra acceleration step to
attain O( 1

k2 ) convergence rate [26]. We show the applicabil-
ity of our approach in numerical experiments.

The rest of the paper is organized as follows. The next
section presents the problem formulation and some pre-
liminary results. In Section III, we describe the distributed
stabilizing and H∞ synthesis method based on dissipativity
theory. In Section IV, we bring forward the computational



Fig. 1: Interconnected system with input d and output z.

formulation based on accelerated ADMM. Two examples are
given in Section V to illustrate the proposed method. Finally,
Section VI concludes the paper and provides directions for
future research.

Notation: The notations employed in this paper are rel-
atively straightforward. R≥0 denotes the set [0,∞). ‖ · ‖
denotes the Euclidean vector norm on Q and 〈·〉 the inner
product. We denote the set of n×n real symmetric matrices
as Sn. For a matrix A ∈ Rm×n, A† denotes the pseudo-
inverse of A. Note that the pseudo-inverse of A always exists
and is unique [27]. For a function f : A→ B, f ∈ Lp(A,B),
1 ≤ p < ∞, implies that

(∫
A
|f(t)|pdt

) 1
p < ∞ and

supt∈A |f(t)| <∞ for p =∞

II. PROBLEM FORMULATION

We consider the controlled linear dynamical systems de-
scribed by

G :

{
ẋ = Ax+Bu+Gw,

y = Cx,
(1)

where, x ∈ X ⊆ Rn are the states of the system, y ∈ Y ⊆
Rny are the outputs of the system, w ∈ W ⊆ Rnw are the
exogenous disturbances and u ∈ U ⊆ Rm are the control
signals. The matrices A : Rn×n, B ∈ Rn×m, G ∈ Rn×nw
and C ∈ Rny×n.

We consider interconnected systems as illustrated in Fig. 1,
where the subsystems {Gi}Ni=1 are known and have dynamics
in the form of (1). We associate each subsystem with a set
of matrices {Ai, Bi, Gi, Ci} and xi ∈ Xi ⊆ Rni , wi ∈
Wi ⊆ Rniw and yi ∈ Yi ⊆ Rn

i
y . The static interconnection

is characterized by a matrix M ∈ Rnw × Rny where n =∑N
i=1 ni, nw =

∑N
i=1 n

i
w and ny =

∑N
i=1 n

i
y . That is, M

satisfies [
w
z

]
= M

[
y
d

]
, (2)

where d ∈ Rnd and z ∈ Rnz . We assume this interconnection
is well-posed, i.e., for all d ∈ L2e and initial condition
x(0) ∈ Rn, there exist unique z, w, y ∈ L2e that casually
depend on d. Furthermore, we define

M =

[
Mwy Mwd

Mzy Mzd

]
,

where Mwy ∈ Rnw×ny , Mwd ∈ Rnw×nd , Mzy ∈ Rnz×ny ,
and Mzd ∈ Rnz×nd

The local and global supply rates, Wi(wi, yi) and W (d, z),
respectively, are defined by quadratic functions. That is,

W (x, d, z) =

[
d
z

]′
S

[
d
z

]
. (3)

In [16], the authors, inspired by the work [15], showed
that certifying the dissipativity of an overall interconnected
system can be concluded if each of the subsystems satisfy
the local dissipativity property. Let

Li =

{
Si |

[
wi
yi

]′
Si

[
wi
yi

]
≤ 0

}
, (4)

and

L =

{
{Si}Ni=1 |

[
M
Iny

]′
P ′πQPπ

[
M
Iny

]
< 0

}
, (5)

where Q = diag(S1, . . . , SN ,−S) and Pπ is a permutation
matrix defined by 

w1

y1
...
wN
yN
d
z


= Pπ


w
z
y
d

 . (6)

Proposition 1 (Proposition 1, [16]): Consider the inter-
connection of N subsystems as given in (2) with the global
supply rate (3). If there exists {Si}Ni=1 satisfying

Si ∈ Li, i = 1, . . . , N, (7)

and
(S1, . . . , SN ,−S) ∈ L, (8)

then the interconnected system is dissipative with respect to
the global supply rate. A storage function certifying global
dissipativity is V (x) =

∑N
i=1 Vi(xi), where Vi is the storage

function certifying dissipativity of subsystem i as in Li.

III. DISTRIBUTED SYNTHESIS USING DISSIPATIVITY

The dynamics of each subsystem of G is characterized by

Gi :

{
ẋi = Aixi +Biui +Giwi,

yi = Cixi,
(9)

with i = 1, 2, . . . , N . Using (2), the overall system can be
described as

G :

{
ẋ = (A+GMwyC) x+Bu+Mwd d,

z = MzyC x+Mzd d,
(10)

where A = diag(A1, . . . , AN ) ∈ Rn×n, B =
diag(B1, . . . , BN ) ∈ Rn×nu , G = diag(G1, . . . , GN ) ∈
Rn×nw and C = diag(C1, . . . , CN ) ∈ Rny×n. Although
A has a block-diagonal structure, the overall system matrix
A + GMwyC does not necessarily has any special sparsity



pattern or structure. Moreover, the controller takes the form
of

u = Kx,

where K = diag(K1, . . . ,KN ) ∈ Rnu×n. Therefore, K
has a sparsity pattern inherited from the topology of the
interconnections. In other words, for any subsystem Gi, the
local controllers have only access to the states xi of the local
subsystem.

In the following, we formulate conditions based on linear
matrix inequalities to synthesize stabilizing and robust feed-
back controllers ui = Kixi for the subsystem (9) such that
the overall system satisfies some dissipative property. The
performance of these local controllers are certified by local
storage functions V (xi) = x′iPixi, i = 1, 2, . . . , N based on
Proposition 1.

A. Distributed Synthesis of Stabilizing Controllers

The following result states that the distributed search for
a set of stabilizing controllers is a convex problem. Before
we state the theorem, we define

Si =

[
S11
i S12

i

S21
i S22

i

]
, (11)

where S11
i ∈ Sniw , S12

i ∈ Rn
i
w×n

i
y , S11

i ∈ Rn
i
y×n

i
w and

S22
i ∈ Sn

i
y .

Theorem 1: Consider subsystems (9) and the intercon-
nection topology given by (2), with d, z ≡ 0. If there
exist families of matrices {Si}Ni=1, {Pi}Ni=1 (Pi ∈ Sni ) and
{Yi}Ni=1 (Yi ∈ Rni×ni ) such that (8) is satisfied with S = 0,
and

Pi > 0, i = 1, 2, . . . , N, (12)

[
A′iPi + PiAi + Y ′i + Yi − C ′iS22

i Ci
G′iPi − S12

i Ci

PiGi − CiS21
i

−S11
i

]
≤ 0, (13)

for i = 1, 2, . . . , N , then the local controllers

Ki = B†iP
−1
i Yi, (14)

render the overall system asymptotically stable.
Proof: Let Vi(x) = x′iPixi, i = 1, 2, . . . , N be a family

of local candidate storage functions. Inequalities (12) ensures
that Vi’s are positive definite functions of xi. Computing the
time derivative of Vi gives

dVi
dt

= ẋ′iPixi + x′iPiẋi.

Substituting (9) and ui = Kixi yields

dVi
dt

= (Aixi +BiKixi +Giwi)
′
Pixi

+ x′iPi (Aixi +BiKixi +Giwi)

= x′i (A′iPi + PiAi +K ′iB
′
iPi + PiBiKi)xi

+ w′iG
′
iPixi + x′iPiGiwi.

Writing the last line of the above expression in quadratic
form and substituting (14) gives

dVi
dt

=

[
xi
wi

]′ [
A′iPi + PiAi + Y ′i + Yi PiGi

G′iPi 0

] [
xi
wi

]
(15)

Since (13) holds, if we multiply it left and right by
[
xi
wi

]′
and

[
xi
wi

]
, respectively, we obtain

dVi
dt
≤
[
wi
Cix

]′ [
S11
i S12

i

S21
i S22

i

] [
wi
Cix

]
, (16)

in which we used (15). Summing up the terms in the above
expression for all i gives

dV

dt
≤

N∑
i=1

[
wi
yi

]′
Si

[
wi
yi

]
. (17)

Furthermore, since (8) holds with S = 0, multiplying the

LMI in (5) from left and right by
[
y
d

]′
and

[
y
d

]
, respectively,

and using the interconnection topology relation (2), we have
N∑
i=1

[
wi
yi

]′
Si

[
wi
yi

]
< 0.

Therefore, dVdt ≤
∑N
i=1

[
wi
yi

]′
Si

[
wi
yi

]
< 0.

B. Distributed H∞-Synthesis

Theorem 1 brings forward conditions under which the
interconnected system can be stabilized by synthesizing a
set of local controllers {Ki}Ni=1. Depending on the choice
of matrix Q, in particular S, in the global dissipativity
constraint (5), we can have different synthesis performances.
The next proposition states that we can synthesize local
controllers such that the global H∞-norm from the inputs
d to z is minimized.

Assumption 1 (Zero-State Detectability): Let ny < n. It
holds that

rank

Mzy

C1 0 0

0
. . . 0

0 0 CN


 = ny.

Note that the above assumption means that y ≡ 0 implies
x ≡ 0. This propety will be used in the Proposition below
to prove asymptotic stability.

Proposition 2: Consider subsystems (9) and the intercon-
nection topology given by (2). Let Assumption 1 holds and
d ∈ L2. If there exists a positive constant η, and families
of matrices {Si}Ni=1, {Pi}Ni=1 (Pi ∈ Sni ) and {Yi}Ni=1 (Yi ∈
Rni×ni ) that solves the following optimization problem

min
{Si}Ni=1,{Pi}Ni=1,{Yi}Ni=1

η

subject to (12), (13), and (8) (18)

with
S =

[
ηInd 0

0 −Inz

]
, (19)



then, the local controllers (14) render the interconnected
system asymptotically stable for d ≡ 0. Furthermore, when
x(0) = 0, we have

‖G‖H∞ := inf
‖d‖L2

6=0

‖z‖L2

‖d‖L2

=
√
η. (20)

Proof: The proof follows the same lines as the proof
of Theorem 1. Since (8) holds with S given by (19),

multiplying the LMI in (5) from left and right by
[
y
d

]′
and[

y
d

]
, respectively, and using the interconnection topology

relation (2), we obtain

N∑
i=1

[
wi
yi

]′
Si

[
wi
yi

]
<

[
d
z

]′ [
ηInd 0

0 −Inz

] [
d
z

]
.

From (13) and then (17), we have

dV

dt
< η|d|2 − |z|2. (21)

If d ≡ 0, we obtain

dV

dt
< −|z|2.

From Assumption 1, we infer that |z|2 = 0 if and only if
x ≡ 0. Thus, from LaSalle’s Invariance Theorem [28], we
deduce that the system is asymptotically stable.

Moreover, integrating both sides of inequality (21) from
time 0 to ∞ gives

V (x(∞))− V (x(0)) < η

∫ ∞
0

|d(t)|2 dt−
∫ ∞
0

|z(t)|2 dt.

From the fact that the storage function is positive definite (it
is the finite sum of positive definite functions), we infer that,
for x(0) ≡ 0, V (x(0)) = 0 and we have

0 < η

∫ ∞
0

|d(t)|2 dt−
∫ ∞
0

|z(t)|2 dt.

That is,
‖z‖2L2

< η‖d‖2L2
.

Hence, minimization over η gives (20).
The formulation presented here can also be extended

to accommodate class of uncertainties and nonlinearities
captured by Integral Quadratic Constraints (see Appendix).

C. Discussion on Conservativeness

In the following, we briefly discuss the conservativeness
of the proposed method in Section III-A and Section III-B.

Given the subsystems G1, . . . ,GN , the global Lyapunov
function satisfies

V (x) =

N∑
i=1

Vi(xi) =

x1...
xN


′ P1 0 0

0
. . . 0

0 0 PN


x1...
xN

 .

This is indeed a conservative structure, since the cross terms
in the quadratic Lyapunov function are zero. In fact, Theo-
rem 1 searches over all block-diagonal Lyapunov functions
in a distributed manner using dissipativity theory. Block-
diagonal Lyapunov functions were also considered in [29]
to design local controllers based on chordal decomposition
techniques for block-chordal sparse matrices. In addition,
it was demonstrated in [30], that block-diagonal Lyapunov
functions lead to sparsity invariance and can be used design
structured controllers.

Although converse theorems for diagonal Lyapunov func-
tions have received tremendous attention in the literature
(especially for positive systems [31], [32]), studies on find-
ing the class of stable systems that admit block-diagonal
Lyapunov functions are relatively few and far between [33].
Recently, in [34], the authors define a suitable comparison
matrix, and then demonstrate that if the comparison matrix
is scaled diagonal dominant, the stability of a block system
is equivalent to the existence of a block diagonal Lyapunov
function.

IV. COMPUTATIONAL FORMULATION USING
ACCELERATED ADMM

For small-scale systems, we can solve the feasibility and
optimization problems in Theorem 1 and Proposition 2 using
publicly available SDP solvers like MOSEK [35], SeDuMi
[36] or SDPT3 [37]. But, these SDP solvers do not scale
well for larger problems. For larger problems, the ADMM
algorithm [17] allows us to decompose convex optimization
problems into a set of smaller problems. A generic convex
optimization problem

minimize f(y)

subject to y ∈ C , (22)

where x ∈ Rn, f is a convex function, and C is a convex
set, can be written in ADMM form as

minimize f(y) + g(v)

subject to y = v, (23)

where g is the indicator function of C .
Using the above form, problem (8) can be written in

ADMM form with f(y) is defined as sum of µ and the
indicator function of (12) and (13), and g(v) is defined as the
indicator function of (8). Then, the scaled form of ADMM
form for problem in (23) is

yk+1 = arg min
yi∈Li

f(y) + (ρ/2)||y − vk + uk||22,

vk+1 = arg min
v∈L

g(v) + (ρ/2)||yk+1 − v + uk||22,

uk+1 = uk + yk+1 − vk+1,

where y and v are the vectorized form of the matrices
{Si}Ni=1, {Pi}Ni=1, {Yi}Ni=1, u is the scaled dual variable and
ρ > 0 is the penalty parameter. Since f(y) is separable for



each subsystem, the ADMM algorithm can be parallelized
as follows:

yk+1
i = arg min

yi∈Li
fi(y) + (ρ/2)||yi − vki + uki ||22,

vk+1 = arg min
v∈L

g(v) + (ρ/2)||yk+1 − v + uk||22,

uk+1 = uk + yk+1 − vk+1,

Under mild assumptions, the ADMM algorithm converges
[17], but the convergence is only asymptotic, therefore it may
require many iterations to achieve sufficient accuracy.

A. Accelerated ADMM

For faster convergence, the so-called accelerated versions
of similar first order algorithms have been proposed in the
literature [18], [19], [20], [21], [22], and the methods achieve
O( 1

k2 ) convergence after k iterations, which is shown to be
optimal for a first order method [23]. The main drawback
of these approaches is, they usually require the function
f(y) to be differentiable with a known Lipschitz constant
on the ∇f(y), which does not exist when the problem has
constraints. For the case when f(y) or g(y) is not strongly
convex or smooth, smoothing approaches have been used
[24], [25] to improve convergence. However, to the best
of our knowledge, these methods have not been applied in
distributed controller synthesis problems.

Consider the following perturbation of (18):

min
{Si}Ni=1,{Pi}Ni=1,{Yi}Ni=1

η + µ di(Si, Pi, Yi)

subject to (12), (13), and (8) (24)

for some fixed smoothing parameter µ > 0 and a strongly
convex function d that satisfies

d(y) ≥ d(y0) +
1

2
||y − y0||22 (25)

for some point y0 ∈ Rn. Specifically, we choose di =
‖Si‖F +‖Pi‖F +‖Yi‖F , where ‖·‖F is the Frobenius norm.
For some problems, it is shown that for small enough µ,
the approximate problem (24) is equivalent to the original
problem (18) [25].

When f(x) and g(x) are strongly convex, the ADMM
algorithm can be modified with an acceleration step to
achieve O( 1

k2 ) convergence after k iterations [26]. Then, the
accelerated ADMM algorithm is

M

G1 G2

G3

K1 K2

K3

dz

Fig. 2: The interconnected system in Example I.

yki = arg min
yi∈Li

fi(y) + (ρ/2)||yi − v̄ki + ūki ||22,

vk = arg min
v∈L

g(z) + (ρ/2)||yk − v + ūk||22,

uk = ūk + yk − vk,

αk+1 =
1 +

√
1 + 4α2

k

2

v̄k+1 = vk +
αk − 1

αk+1
(vk − vk−1)

ūk+1 = uk +
αk − 1

αk+1
(uk − uk−1),

where ρ is a positive constant that satisfies ρ ≤ µ, and α1 =
1.

Note that y update can be carried out in parallel, while
achieving O( 1

k2 ) convergence, which cannot be achieved by
the standard ADMM or accelerated proximal methods due
to constraints in the problem.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the proposed distributed
synthesis method using two example. The first one is an
average-sized system for which we present the constructed
controllers and certificates. The second example pertains to a
system with 100-states, where we compare the convergence
rate of ADMM with accelerated ADMM. We implemented
both standard ADMM and accelerated ADMM algorithms in
MATLAB using the CVX toolbox [38] and MOSEK [35] to
solve SDP problems.

A. Example I

We consider a modified version of the example in [39] as
illustrated in Fig 2. For i = 1, 2, 3, the subsystems Gi are
characterized as follows:

G1 :


ẋ1 =

[
4 0

2 −2

]
x1 + I2

[
w2

w4 + d

]
+ I2u1,

w1 = 0.5
[
1 1

]
x1,



G2 :


ẋ2 =

[
8 0

12 −2

]
x2 +

[
1

1

]
w1 + I2u2,[

w2

w3

]
= 0.5I2x2,

G3 :


ẋ3 =

[
2 0

2 −2

]
x3 +

[
1

1

]
w3 + I2u3,

w3 = 0.4
[
1 1

]
x3.

The global input and output are given as

d =
[
0 1

]
x3 and z = w4 = 0.4

[
1 1

]
x3.

The overall system with zero-input has 3 eigenvalues with
positive real parts, therefore the zero-input system is unsta-
ble. We apply the compositional approach underlined by the
problem in (24) to synthesize a controller to minimize the
H∞-norm between the output z and input of d subsystem 1.
After 19 iterations with the accelerated ADMM method, the
value of the objective is η = 4.9 · 10−4 with the following
controllers:

K1 =

[
−4.7760 −1.1078
−1.1138 −0.6947

]
,

K2 =

[
−6.5288 −4.5095
−5.5751 −3.8507

]
,

K3 =

[
−100.4125 −90.2510
−56.2576 −50.5649

]
.

and following local Lyapunov functions:

P1 =

[
0.001 −2.7 · 10−6

−2.7 · 10−9 0.0010

]
,

P2 =

[
0.0019 −9.87 · 10−4

−9.87 · 10−4 0.0021

]
,

P3 =

[
0.0045 −0.0064
−0.0064 0.0129

]
.

B. Example II

In order to test and compare the different forms of ADMM
methods discussed in Section IV, we randomly generated
N = 20 unstable and controllable LTI subsystems, each
with 5 states, 2 inputs, and 2 outputs. The dynamics of each
subsystem is characterized by the equations (9), with the
maximum real part for an eigenvalue of Ai is normalized
to 1, and random interconnection matrix M that was ran-
domly generated with 5% its entries being nonzero.

The iterative methods were initialized using S0
i = P 0

i =
Y 0
i = U0

i = I . For each method, we plot the norm of primal
residual in Figure 3, which is defined as rk = xk − xk, and
it is the residual for primal feasibility. Also, we show the
norm of the dual residual sk = ρ(zk − zk−1) in Figure 4,
which can be viewed as a residual for the dual feasibility
condition.

We remark that the accelerated ADMM method signifi-
cantly improves the convergence rate for primal and dual

0 10 20 30 40 50

10−8

10−6

10−4

10−2

100

Number of iterations

||r
k
||

Primal residual versus number of iterations

ADMM
Accelerated ADMM

Fig. 3: Norm of primal residual versus number of iterations
for the decentralized synthesis problem with standard and
accelerated ADMM.
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10−7
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10−5

10−4

10−3

10−2

10−1

Number of iterations

||s
k
||

Dual residual versus number of iterations

ADMM
Accelerated ADMM

Fig. 4: Norm of dual residual versus number of iterations
for the decentralized synthesis problem with standard and
accelerated ADMM.

residuals compared to standard ADMM. After 20 iterations,
the accelerated method achieves convergence within the
tolerance ε = 10−6, which is not achievable by the standard
ADMM method after 50 iterations, and it may require many
iterations for the standard ADMM method to achieve high
accuracy.

VI. CONCLUSIONS AND FUTURE WORK
We studied the distributed synthesis problem of large

scale linear systems, for which an underlying interconnec-
tion topology is given. For such systems, we decompose
the structured controller design problem (inherited by the
interconnection topology) into a number of smaller local syn-
thesis problems associated with local dissipation inequalities
and a global gain condition. Furthermore, we proposed a
distributed optimization method with smoothing techniques,



which enables to employ accelerated accelerated ADMM.
Numerical results show that the accelerated ADMM method
significantly improves the convergence rate compared to
standard ADMM. As discussed in Section III-C, the block-
diagonal Lyapunov function structure may lead to some
degree of conservatism. Future research will explore other
Lyapunov function structures that are less conservative and,
at the same time, lead to a decompositional synthesis tech-
nique. In particular, the vector Lyapunov approach [40]
seems promising in this respect. Future research will also
consider the extensions of the distributed synthesis method
to nonlinear (polynomial) systems and hybrid dynamical
systems.
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APPENDIX

In this section, we consider large-scale systems with
subsystems that are subject to nonlinearities, time variations,
and uncertain parameters which can be characterized by an
integral quadratic constraint (IQC) [41], [42]. Let Γ : jR→
Cnµ×nζ be a measurable Hermitian-valued function. We say
∆ satisfies the IQC defined by Γ, if and only if the following
inequality holds∫ ∞

−∞

[
µ̂(jω)

ζ̂(jω)

]′
Γ(jω)

[
µ̂(jω)

ζ̂(jω)

]
dω ≥ 0, (26)

where µ ∈ L2, ζ = ∆(µ), and µ̂(jω) and ζ̂(jω) are the
Fourier transforms of µ and ζ, respectively. If the IQC
multiplier Γ is uniformly bounded on the imaginary axis
and rational, then (26) can also be described in the time-
domain, wherein Γ can be factorized as Ψ(jω)∗QΨ(jω),
with Q being a constant matrix and Ψ being a stable linear
time invariant system. Let Ψ have the realization

Ψ :


γ̇ = Ãγ + B̃µ+ G̃ζ,

yψ = C̃γ + D̃µ+ H̃ζ

γ(0) = 0.

(27)

Since our formulation is based on dissipation inequalities, we
consider the so called "hard" IQCs [43] defined by (Ψ, Q).
That is, IQCs of the form∫ T

0

y′ψQyψ dt ≥ 0, (28)

for any 0 ≤ T <∞, yψ is defined as

yψ = Ψ

[
µ
ζ

]
.

To account for IQC-bounded uncertainties, we consider

local storage functions Vi(xi, γi) =

[
xi
γi

]′
Pi

[
xi
γi

]
with Pi

of appropriate dimension depending on the realization of Ψi.
Then, in order for the subsystems to be dissipative subject
to an IQC, condition (7) should be modified to(

∂Vi
∂xi

)′
(Aixi +Biui +Giwi)

+

(
∂Vi
∂γi

)′ (
Ãiγi + B̃iµi + G̃iζi

)
≤
[
wi
yi

]′
Si

[
wi
yi

]
− λi

(
C̃iγi + D̃iµi + H̃iζi

)′
Qi

(
C̃iγi + D̃iµi + H̃iζi

)
(29)

for some λi > 0.
Then, Lemma 1 in [43] can be used to formulate LMI

conditions for checking dissipativity of the subsystem subject
to an uncertainty or nonlinearity defined by an IQC.


