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Abstract— We propose a method based on quadratic pro-
gramming for learning control-oriented models of physical
systems for which limited data from only one trajectory is
available. To this end, we take advantage of the principle of
least action1 from physics. We propose two methods based on
quadratic programming to approximate either the Lagrangian
or the Hamiltonian of the system from data. We show how
these learning methods can accommodate symmetries about the
underlying system, if they are known a priori. Furthermore,
we incorporate the error in the approximation to build a
data-driven differential inclusion, that is suitable for control
purposes. We illustrate the results by two examples.

I. INTRODUCTION

Methods such as deep learning and reinforcement learning
have been successful in modeling and controlling many
dynamical systems [1], [2]. For such methods to achieve
acceptable performance, we often require multiple system
runs (trajectories from different initial conditions) over long
time spans, i.e., large sums of data. However, for a relatively
broad class of systems, collecting large sums of data can be
too cumbersome or not economically efficient. The scarcity
of the available data is particularly noticeable for safety-
critical systems. For instance, it is not practically possible to
test and collect data from all possible aircraft failure scenar-
ios [3]. Furthermore, for safety-critical systems, we need to
approximate a model that can be used for control purposes
without incurring high computational cost (as opposed to
conventional learning methods).

In the control literature, system analysis based on input-
output data or input-state data is not new. System identifica-
tion techniques [4] have looked into the problem of finding
a model of the system based on data. Yet, the available
methods are either data-hungry or computationally expensive
(especially if they require a validation stage).

Incorporating the underlying physics of the unknown sys-
tem has shown to be useful in modeling the dynamics based
on trajectory data. Two recent studies in this area are [5]
and [6]. Although the method in [6] extracts all physical laws
that govern the system, but it requires hours of computation
on multi-processor computers. The approach in [5], on the
other hand, provides an algorithm to find the Lagrangian L of
a system from single trajectory data based on the solution to
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1A system moves in such a way that the time integral over the Lagrangian
takes an extreme value, i.e., δ

∫ t2
t1
L dt = 0.

a nonlinear optimization problem, which lacks scalability and
convergence guarantees [7]. Furthermore, in [8], a method for
identifying discrete Lagrangian mechanics was formulated,
when the underlying dynamics evolve sufficiently close to
some manifold in the configuration space. The authors also
proposed a method for bounding the error bounds using tech-
niques from reproducing kernel Hilbert spaces. Nonetheless,
similar to [5] and [6], the approach in [8] also requires
collecting large sum of data that may not be available in
several scenarios.

Constructing Lagrangian or Hamiltonians of physical sys-
tems are important from a control perspective. In this respect,
significant research has been carried out to address the
control problem of Lagrangian and Hamiltonian systems [9],
[10], [11], [12], [13], [14]. Most of these methods are
concerned with designing tracking controllers such that the
Hamiltonian has an assigned minimum corresponding to
the reference trajectory. In [10, Proposition 7], an LMI
formulation for stabilization is proposed based on the results
of Ortega [13], [14] for linear port-Hamiltonian systems
(Hamiltonian systems with inputs and outputs).

In this paper, we formulate a method based on quadratic
programming to approximate the Lagrangian or the Hamilto-
nian of a system from limited data from a single trajectory.
The proposed approach is not data hungry and, due to its
quadratic programming formulation, scale very well with the
the number of states. If some a priori knowledge about the
symmetries is available, we show that it can be added as a set
of linear constraints to the quadratic programs. We further
demonstrate how the approximation errors can be bounded
and used to construct data-driven differential inclusions that
can be used for control purposes, such as safety analysis [15].
We elucidate the proposed method by two examples, namely,
the Duffing oscillator and the Acrobot.

The paper is organized as follows. The next section
presents the notation and a brief introduction to Lagrangian
and Hamiltonian mechanics. In Section III, we propose a
method based on convex optimization (quadratic program-
ming) to approximate the Lagrangian and the Hamiltonian.
Section IV discusses how we can bound the approximation
errors. In Section V, we formulate data-driven differential
inclusions based on the approximated dynamics and the error
bounds. Two examples are studied in Section VI to illustrate
the proposed methods in the paper. Finally, Section VII con-
cludes the paper and provides directions for future research.

II. PRELIMINARIES

Notation: R≥0 denotes the set [0,∞). ‖ · ‖ denotes the
Euclidean vector norm on Rn and 〈·〉 the inner product. For



A ∈ Rm×n, A′ ∈ Rm×n denotes its transpose and A |k its
kth row. For a function f : A→ B, f ∈ Lp(A,B), 1 ≤ p <
∞, implies that

(∫
A
|f(t)|pdt

) 1
p < ∞ and supt∈A |f(t)| <

∞ for p =∞.

A. Lagrangian and Hamiltonian Mechanics

We provide a brief introduction to Lagrangian and Hamil-
tonian mechanics. Our notation in the sequel follows [16]
and [17].

Let Q ⊂ Rn be an n-dimensional configuration manifold
with local coordinates q = (q1, q2, . . . , qn)′ and TQ the
corresponding tangent bundle (the state space). The La-
grangian L(q1, q2, . . . , qn, q̇1, . . . , q̇n), L : TQ → R, is a
twice differentiable function that satisfies the Euler-Lagrange
equations

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= B(q)u, (1)

where B(q)u represents the external forces. Throughout
this paper, we assume u ∈ L∞ ([0,∞), U), with U being
the control manifold. For simple mechanical systems, the
Lagrangian is the difference between the (positive semi-
definite) kinetic energy K and the potential energy P

L = K − P. (2)

Given the Lagrangian, we can find the system dynamics
by solving (1) for each local coordinates The system is
referred to as fully-actuated, if rank [B(q)] = n, and, under-
actuated, if rank [B(q)] < n. In other words, under-actuated
systems are mechanical systems that have fewer actuators
than configuration variables.

At this point, let T ∗Q to be the cotangent bundle of Q.
The Hamiltonian is a function H : T ∗Q→ R. We define the
local coordinates on T ∗Q to be the pair (q, p) ∈ Rn × Rn,
where p is referred to as the generalized momenta defined
as pi = ∂L

∂q̇i
. We can calculate the Hamiltonian of the system

from Lagrangian using the so called Legendre transform as

H(q, p) =
n∑
i=1

∂L(q, q̇)

∂q̇i
q̇i − L(q, q̇). (3)

Once the Hamiltonian is known, we can obtain the dynamics
of the system as[

ṗ
q̇

]
=

[
−∂H(q,p)

∂q
∂H(q,p)
∂p

]
+

[
B(q)

0

]
u. (4)

III. CONTROL-ORIENTED LEARNING VIA
CONVEX OPTIMIZATION

A. Lagrangian Approximation

In this section, we propose a method for approximating
the Lagrangian of a physical system from data. That is,
given {ti, u(ti), q(ti), q̇(ti), q̈(ti)}Ni=1, find an approximated
Lagrangian L̂(q, q̇) of the system. We consider the following
structure

L̂(q, q̇) =

d∑
i=1

αiφi(q, q̇), (5)

where φi(q, q̇), i = 1, ..., d are a set of twice differentiable
basis functions, e.g. polynomial or Chebyshev basis, and αi,
i = 1, ..., d, a set of constants. Substituting (5) in (1) yields

d

dt

(∂ (∑d
i=1 αiφi(q, q̇)

)
∂q̇

)
−
∂
(∑d

i=1 αiφi(q, q̇)
)

∂q

=

d∑
i=1

αi
d

dt

(
∂ (φi(q, q̇))

∂q̇

)
−

d∑
i=1

αi
∂ (φi(q, q̇))

∂q

=

d∑
i=1

αi

(
d

dt

(∂ (φi(q, q̇))

∂q̇

)
− ∂ (φi(q, q̇))

∂q

)
. (6)

We define the following cost function

Jk(α, t) :=

d∑
i=1

n∑
j=1

αi

(
∂2φi(q, q̇)

∂q̇j∂qk
q̇k +

∂2φi(q, q̇)

∂q̇j∂q̇k
q̈k

)

−B(q)u(t) |k −
d∑
i=1

αi
∂φi(q, q̇)

∂qk
, k = 1, 2, ..., n, (7)

where we computed the time-derivative in the last line of (6)
to obtain the right-hand side of (7). Define the following
aggregate objective function

J(α) =
1

N

N∑
i=1

J ′(α, ti)J(α, ti),

where J(α, ti) = (J1(α, ti), . . . , Jn(α, ti))
′. Note that each

Jk(α, ti) is an affine function of α; (·)2 is a strictly convex,
non-decreasing function, and the sum of a set of convex
functions is convex; hence, J(α) is a convex function of α.
Furthermore, by the second derivative test, one can show that
J(α) is in fact strictly convex.

Therefore, given {ti, u(ti), q(ti), q̇(ti), q̈(ti)}Ni=1, it suf-
fices to solve the following convex optimization problem to
find an approximated Lagrangian

minα J(α). (8)

Note that the above optimization problem is indeed a
quadratic program, since J(α) is a quadratic function of the
parameters α. That is, it can be written as

minα α
′Qα+ c′α

where Q is a positive definite matrix due to the fact that
J(α) is a strictly convex function. Furthermore, in order to
avoid the trivial solution L̂ = 0 which corresponds to α ≡
0, without loss of generality, we add the linear constraint∑
i αi ≥ µ, where µ > 0 is a small preset constant.
For positive definite Q, the ellipsoid method can be used

to solve the quadratic program in polynomial time [18]. This
can be compared to the nonlinear optimization formulation
solved by the Nelder-Mead method in [5], which can take an
enormous amount of iterations with negligible improvement
in function value [7].



B. Hamiltonian Approximation

Similar to the previous section, we now describe
a method based on convex optimization to
approximate the Hamiltonian from data. That is, given
{ti, u(ti), q(ti), q̇(ti), p(ti), ṗ(ti)}Ni=1, find an approximated
Hamiltonian Ĥ(q, p) of the system. Once this Hamiltonian
is found, the estimated dynamics of the system can be found
by (4).

We consider a the following parametrization for approxi-
mating the Hamiltonian

Ĥ(q, p) =

d∑
i=1

αiφi(q, p). (9)

Substituting the above parametrized Hamiltonian in (4)
yields

ṗ = −
d∑
i=1

αi
∂φi(q, p)

∂q
+B(q)u,

q̇ = +

d∑
i=1

αi
∂φi(q, p)

∂p
. (10)

We also define the following functions

Lk,p(α, t) := ṗk +

d∑
i=1

αi
∂φi(q, p)

∂qk
−B(q)u(t) |k,

Lk,q(α, t) := q̇k −
d∑
i=1

αi
∂φi(q, p)

∂pk
,

for k = 1, 2, ..., n. Then, the following convex aggregate
objective function can be defined

L(α) =
1

N

N∑
i=1

(
L′p(α, ti)Lp(α, ti) + L′q(α, ti)Lq(α, ti)

)
(11)

Then, given the data {ti, u(ti), q(ti), q̇(ti), p(ti), ṗ(ti)}Ni=1, it
suffices to solve the following convex optimization problem
to find the approximated Hamiltonian

minα L(α). (12)

Note that, similar to (8), (12) is also a quadratic program.

C. Incorporating Symmetries: Noether’s Theorem

Conservation laws are ubiquitous in physical systems.
Once a conservation law about a physical system is known,
the derivation of the equations describing the dynamics of
the system may become less involved. An important result
in physics, which relates the existence of conservation laws
to symmetries2, is Noether’s (first) Theorem [19], i.e., every
differentiable symmetry of the action of a physical system
has a corresponding conservation law.

We consider three classes of symmetries:

2A symmetry is some continuous transformation of the system which
leaves some physical or mathematical feature (e.g. the Lagrangian) un-
changed.

• If the system is subject to space translational symmetry
in a coordinate qi, i.e., ∂L

∂qi
= 0, we have the conserva-

tion of momentum in that direction

d

dt

(
∂L
∂q̇i

)
=
dpi
dt

= 0. (13)

• If the system is subject to temporal translational sym-
metry, i.e., ∂L

∂t = 0, we have the conservation of
energy (Hamiltonian)

d

dt

(
n∑
i=1

∂L
∂q̇i

q̇i − L

)
=
dH
dt

= 0. (14)

• Similarly, if the system is subject to rotational symmetry
in the generalized coordinate qi, we can show that the
angular momentum is conserved

d

dt

(
∂L
∂q̇i
· (−→n × qi)

)
=

d

dt

(
∂L
∂q̇i
· (−→n × qi)

)
=

d

dt

(
−→n · (qi ×

∂L
∂q̇i

)

)
=

d

dt

(
−→n · (qi × pi)

)
= 0,

(15)

where −→n is the unit vector on the axis of rotation.
If any of the above symmetries is known a priori about

the system, either equations (13), (14) or (15), depending
on the symmetry, can be added as a linear constraint to the
quadratic programs (8) and (12).

IV. BOUNDING APPROXIMATION ERRORS

Although optimization problems (8) and (12) are con-
vex programs, their solution may not lead to the actual
Lagrangian and Hamiltonian, respectively, of the system.
These discrepancies are not only due to the lack of complete
information about the system trajectory (limited available
data), but also can result from the number of basis functions
considered (and the type of basis functions e.g. polynomial,
Chebyshev and etc.). Next, we delineate a method to find
bounds on the approximation errors from the convex pro-
grams.

A. Lagrangian Case

We now show that the error between the approximated
Lagrangian and the actual Lagrangian can be represented by
an external force exerted to the system. Let ∆L(q, q̇) denote
the error in the Lagrangian estimation. We have L(q, q̇) =
L̂(q, q̇) + ∆L(q, q̇). Taking the variation δ from both sides
of the above equation gives

δL(q, q̇) = δ
(
L̂(q, q̇) + ∆L(q, q̇)

)
= δL̂(q, q̇) + δ∆L(q, q̇). (16)

From (1), we know that δL(q, q̇) = B(q)u. Therefore, we
obtain

B(q)u =
d

dt

(
∂L̂
∂q̇

)
− ∂L̂
∂q

+ δ∆L(q, q̇) (17)



That is, −δ∆L(q, q̇) = d
dt

(
∂L̂
∂q̇

)
− ∂L̂

∂q − Bu. Defining

εL(q, q̇, q̈) := −δ∆L(q, q̇) ∈ Rn, we have

d

dt

(
∂L̂
∂q̇

)
− ∂L̂
∂q
−Bu = εL(q, q̇, q̈), (18)

which implies that the error between the actual Lagrangian L
and the Lagrangian estimated from data L̂ can be character-
ized as an external force acting on the approximated system.
Furthermore, we infer∣∣∣∣∣ ddt

(
∂L̂
∂q̇

)
− ∂L̂
∂q
−Bu

∣∣∣∣∣ = |εL(q, q̇, q̈)| ≤ sup
q,q̇,q̈

εL(q, q̇, q̈),

(19)
where the supremum is element-wise. Note that if
the optimal solution to problem (8) is γ∗ = 0,
then εL |{ti,q(ti),q̇(ti),q̈(ti)}Ni=1

= 0. Hence, J(α, ti) =
εL(q(ti), q̇(ti), q̈(ti)). However, due to the finiteness of the
parametrization of L̂, γ∗ is often non-zero. With γ∗ 6= 0, we
have

1

N

N∑
i=1

J ′(α, ti)J(α, ti)

=
1

N

N∑
i=1

|εL(q(ti), q̇(ti), q̈(ti))|2 ≤ γ∗,

which imples supi∈{1,2,...,N} |εL(q(ti), q̇(ti), q̈(ti))| ≤
√
γ∗.

Consequently,
εL ≤ εL ≤ ε̄L,

where εL = −√γ∗1n and ε̄L =
√
γ∗1n.

B. Hamiltonian Case

To see the effect of the error in approximating the Hamil-
tonian, we substitute H = Ĥ+ ∆H in (4) to obtain[

ṗ
q̇

]
=

[
−∂Ĥ(q,p)

∂q
∂Ĥ(q,p)
∂p

]
+

[
B(q)

0

]
u+

[
−∂∆H(q,p)

∂q
∂∆H(q,p)

∂p

]
. (20)

Defining εH(q, p) =

[
−∂∆H(q,p)

∂q
∂∆H(q,p)

∂p

]
, we have

[
ṗ
q̇

]
=

[
−∂Ĥ(q,p)

∂q
∂Ĥ(q,p)
∂p

]
+

[
B(q)

0

]
u+ εH . (21)

Therefore, the influence of the error in Hamiltonian ap-
proximation can be viewed as the model being subject to
the disturbance εH . Let γ∗ be the solution to quadratic
program (12) with L(α) defined as (11). Then, we have

1

N

N∑
i=1

(
L′p(α, ti)Lp(α, ti) + L′q(α, ti)Lq(α, ti)

)
≤ γ∗,

which in turn implies that

sup
i∈{1,...,N}

(
|Lp(α, ti)|2 + |Lq(α, ti)|2

)
≤ γ∗.

Without loss of generality, we assume the error is
divided equally between the p and q dynamics.

That is, to say supi∈{1,...,N} |Lp(α, ti)|2 ≤ γ∗

2 and
supi∈{1,...,N} |Lq(α, ti)|2 ≤

γ∗

2 . Then, following the same
lines as of the derivation detailed in the previous section,
we obtain

εH ≤ εH ≤ ε̄H ,

with εH = −
√

γ∗

2 12n and ε̄H =
√

γ∗

2 12n.

V. DATA-DRIVEN DIFFERENTIAL INCLUSIONS

In this section, we build differential inclusion descriptions
of the system dynamics using the approximated Lagrangian
(as described in Section III-A) and the approximated Hamil-
tonian (as described in Section III-B).

A. Lagrangian System

Given the approximated L̂ in the form of (5), we can
estimate the underlying dynamics as

M(q, q̇) q̈ + C(q, q̇) q̇ + V (q, q̇) = B(q)u, (22)

where

Mkj =

d∑
i=1

αi
∂2φi(q, q̇)

∂q̇j∂q̇k
, (j, k) ∈ {1, 2, . . . , n}2,

is a symmetric matrix, and

Ckj =

d∑
i=1

αi
∂2φi(q, q̇)

∂q̇j∂qk
, (j, k) ∈ {1, 2, . . . , n}2,

Vk = −
d∑
i=1

αi
∂φi(q, q̇)

∂qk
, k ∈ {1, 2, . . . , n}.

For physical systems, the matrix M is called the inertial
matrix and M is positive definite and symmetric [20, Chapter
4]. Multiplying both sides of (22) from left by M−1, we have

q̈ = −M−1(q, q̇)C(q, q̇) q̇

−M−1(q, q̇)V (q, q̇) +M−1(q, q̇)B(q)u. (23)

Taking into account the error in approximating the La-
grangian and using a construction analogous to [15], we
obtain

q̈ ∈ co{F} (q, q̇, u) , t ≥ tN , (24)

subject to the initial conditions q(tN ) and q̇(tN ), where the
set-valued map F : TQ× U → 2TQ is given by

F : (q, q̇) 7→ −M−1(q, q̇)C(q, q̇) q̇ −M−1(q, q̇)V (q, q̇)

+M−1(q, q̇)B(q)u+M−1εL,

εL ∈ (εL, ε̄L), (25)

where the bounds εL and ε̄L are computed as described in
Section IV-A.

Figure 1 illustrates the solution set of the differential
inclusion (24) for a system with 1-dimensional configuration
space and constant inertial matrix M . In Appendix A,
we compute how the error bounds evolve with respect to
t ≥ tN . In general, these bounds grow exponentially with
time. However, the error growth can be mitigated by several



t

q(t), q̇(t)

q(0)

q̇(0)

q̇(tN )

q(tN )

Fig. 1: Data samples (black dots), actual system trajectory
(dashed lines), and the solution set of the data driven
differential inclusion (blue).

factors, such as increasing the number of basis functions,
increasing the number of data samples, and choosing an
interpolant with least Lipschitz constant. In the examples,
we show that if the approximation error is sufficiently small,
these errors remain within acceptable limits depending on
the number of data samples.

Next, we show that differential inclusion (24) admits
solutions. We first posit the following.

Assumption 1: For T ≥ tN , there exists a function C ∈
L1([tN , T ],Rn) such that |co{F}(·, ·, t)| ≤ C(t) for all t ∈
[tN , T ].

Proposition 1: Let T ≥ tN and Assumption 1 hold. Then
there exists a unique (absolutely continuous) solution to the
data-driven differential inclusion (24) on [tN , T ].

Proof: See Appendix B.
Note that Assumption 1 implies that differential inclu-

sion (24) does not have solutions that blow-up in finite-time.
Indeed, in order for the data-driven differential inclusion (24)
to have solutions, we consider Lagrangian systems that do
not have solutions that blow up in finite time.

B. Hamiltonian System

Similar to the previous section, we can obtain a differential
inclusion corresponding to (21). That is,[

ṗ
q̇

]
∈ co{G}(q, p, u), t ≥ tN , (26)

subject to p(tN ) and q(tN ), where the set valued map G :
T ∗Q× U → 2T

∗Q is given by

G : (p, q, u) 7→

[
−∂Ĥ(q,p)

∂q
∂Ĥ(q,p)
∂p

]
+

[
B(q)

0

]
u+ εH ,

εH ∈ (εH , ε̄H), (27)

where the bounds εH and ε̄H are computed as described in
Section IV-B, ∂Ĥ(q,p)

∂q =
∑d
i=1 αi

∂φi(q,p)
∂q , and ∂Ĥ(q,p)

∂p =∑d
i=1 αi

∂φi(q,p)
∂p .

At this point, we can state a proposition regarding the
existence and uniqueness of solutions to (26). We need the
following assumption, which parallels Assumption 1.

q

A cos(ωt)

N/SN/S

beam

magnet magnet

rigid frame

Fig. 2: The Duffing oscillator can model the deflections of
a MEMs periodically forced beam which is located between
two magnets.

Assumption 2: For T ≥ TN , there exists a function C ∈
L1([tN , T ],Rn) such that |co{G}(·, ·, t)| ≤ C(t) for all t ∈
[tN , T ].

The proof of the well-poseness proposition below follows
the same lines as of the proof of Proposition 1.

Proposition 2: Let T ≥ tN and Assumption 2 hold. Then,
the data-driven differential inclusion (26) admits a unique
solutions on [tN , T ].

Similar to the case of Lagrangian systems, in order to
satisfy Assumption 2, we consider Hamiltonian systems that
does not allow trajectories that blow up in finite time.

VI. NUMERICAL EXAMPLES

In this section, we illustrate the proposed learning methods
using two examples. For illustration purposes, the basis
functions we considered in both examples were polyno-
mial functions. The differential equations were simulated
using MATLAB’s ode15s function. The corresponding
convex optimization problems were solved using the parser
YALMIP [23] and the solver MOSEK [24]. All computations
were carried out on a Mac OS 2.5 GHz Intel Core i5 with
16 GB of RAM.

A. Example I: Duffing Oscillator

The forced Duffing equation describes oscillations subject
to nonlinear elasticity. For instance, the equation models
oscillations of a micro-beam which is deflected toward
two magnets [25], [26] (see Figure 2). The forced Duffing
equation we consider is given by{

q̇ = p,

ṗ = q − q3 + 0.3 cos(t).
(28)

The actual Hamiltonian of the system can be calculated as
H(q, p) = 1

2p
2− 1

2q
2 + 1

4q
4. Note that system is not globally

stable. However, it does not possess trajectories that blow up
in finite time.

Consider the scenario in which we do not know the
system model or the Hamiltonian a priori. However, we
run the system from an initial configuration and collect data
{ti, p(ti), q(ti), ṗ(ti), ṗ(ti)}Ni=1 (not uniformly) from time 0



TABLE I: Numerical results.

deg(L) 2 3 4 5 6
γ∗ 3.100 2.1435 0.0020 0.0012 0.0009

Computing Time (s) 0.9875 1.1086 1.4307 1.8614 2.2905

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−4

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−6

−4

−2

0

2

4

6

Time (s)

Fig. 3: The state evolutions of the Duffing oscillator (blue),
the data samples (circles), and the estimated solution. N =
50 (top) and N = 30 (bottom).

to 5. Then, we compute the Hamiltonian of the system by
solving quadratic program (12).

For N = 50, Table I shows the obtained results. We can
see that, by increasing the degree of the Hamiltonian from
degree 4 to 6, γ∗ does not decrease significantly, but the
computation time increases. Hence, we select the the model
derived from the obtained Hamiltonian of degree 4 to check
how the approximation error evolves over time. Figure 3
shows the data samples, the actual system trajectory, and
the one obtained from the estimated Hamiltonian. Although
the estimation error grows over time, but the estimation
error remains within acceptable levels even 15 seconds after
collecting data. In order to see the effect of N , we searched
for a degree 4 Hamiltonian function when N = 30. As
expected, Figure 3 indicates that with less data samples, the
estimation error grows more rapidly.

The solutions of the data driven differential inclusion (26)
can also be seen in Figure 4. The actual solution of the
system remains between the two red lines. Therefore, the
differential inclusion model can be used to study control
properties such safety as described in [15].

One may also wonder how the algorithm performs, if we
collect the same amount of data over a larger time span.
Figure 5 depicts the result if we collect N = 50 data
samples over 10 seconds instead of 5. As it is observed,
the performance of the estimated model is improved if the
sampling is carried out over a longer time span.
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Fig. 4: The solutions of the data driven differential inclusion
based on the approximated Hamiltonian (the area between
the red lines).
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Fig. 5: The state evolutions of the Duffing oscillator (blue),
the data samples (circles), and the estimated solution.
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Fig. 6: The Acrobot system and the model paramters.

B. Example II: The Acrobot

The Acrobot is an under-actuated planar two-link robotic
arm in the vertical plane (working against gravity), with just
one actuator at the elbow [27]. It resembles a gymnast (or
acrobat) on a parallel bar, who controls his/her motion by
applying torque at the waist. Figure 6 illustrates the Acrobot
model and the parameters.

The configuration coordinates are q1 (the shoulder joint
angle) and q2 (the elbow relative joint angle). The actual
Lagrangian of the system can be represented by (2), i.e., the
difference between kinetic and potential energies, where

K =
1

2
I1q̇

2
1 +

1

2

(
m2l

2
1 + I2 +m2l1l2 cos(q2)

)
q̇2
1

+
1

2
I2q̇

2
2 +

(
I2 +

m2l1l2 cos(q2)

2

)
q̇1q̇2,



TABLE II: Parameters to simulate the Acrobot.

Parameter Unit Value
l1 m 1
l2 m 2
m1 kg 1
m2 kg 1
I1 kg ·m2 0.083
I2 kg ·m2 0.33
g m/s2 9.81
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Fig. 7: The state evolutions of the Acrobot system (blue lines)
and the data samples (black circles).

and

P =
m1gl1 sin(q1)

2
+m2g

(
l1 sin(q1) +

l2 sin(q1 + q2)

2

)
.

In order to evaluate the performance of the proposed method,
we simulate the dynamics of the system with the initial
condition (π, 0, 0, 0)′ from time 0 to 6, using the parameter
values given in Table II and then select 30 time-ordered data
samples randomly to approximate the Lagrangian and then
the data-driven differential inclusion (see Figure 7).

In order to approximate the dynamics, we solve opti-
mization problem (8), subject to the matrix M as defined
in (22) being positive definite for all data samples. Table III
shows the obtained results. For a polynomial of degree 5,
the Lagrangian has an acceptable error margin. Figure 8
illustrates the state evolution of the actual system and that
of the dynamics obtained by the approximated Lagrangian
for t ≥ 6. The error margins remain relatively small for 12
seconds. However, they become more significant for t ≥ 18.

VII. CONCLUSIONS AND FUTURE WORK

We considered the problem of estimating the Lagrangian
or the Hamiltonian of a system from data, for which only lim-
ited data about one trajectory is available. The construction
methods we introduced use convex optimization (quadratic

TABLE III: Numerical results.

deg(L) 2 3 4 5
γ∗ 1.5032 0.2802 0.0104 0.0003

Computing Time (s) 1.0875 1.2086 1.6019 1.9814
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Fig. 8: The state evolutions of the Acrobot system (blue) and
the approximated dynamics (black).

programming) to carry out the computations in an efficient
manner. We incorporated the error in our approximations to
construct data-driven differential inclusions that can be used
for systems analysis and control purposes.

It was shown in the Appendix that the approximation
error evolution is a function of the interpolant’s Lipschitz
continuity. In [28], the authors proposed a method for finding
an interpolant with minimum Lipschitz constant. Adopting
such interpolation techniques could further minimize the
error growth. Future research will also focus on designing
controller synthesis techniques based on the approximated
Lagrangian and Hamiltonian functions. Such methods should
carry out tasks such as tracking or stabilization along with
guaranteed robustness or optimality performance. Moreover,
in this paper, we assumed the data is not corrupted by noise.
In many practical situations, sensor measurement errors lead
naturally to measurement noise. A more practical extension
of the method considered here should account for noisy data.

REFERENCES

[1] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Systems, vol. 32,
no. 6, pp. 76–105, 2012.

[2] I. Lenz and A. Saxena, “Deepmpc: Learning deep latent features for
model predictive control,” in In Robotics Systems and Science, 2015.

[3] D. Leone, “How an israeli F-15 eagle managed to land with one wing,”
2014. [Online]. Available: https://theaviationist.com/2014/09/15/f-15-
lands-with-one-wing/

[4] L. Ljung, “Perspectives on system identification,” Annual Reviews in
Control, vol. 34, no. 1, pp. 1 – 12, 2010.

[5] D. J. Hills, A. M. Grütter, and J. J. Hudson, “An algorithm for
discovering lagrangians automatically from data,” PeerJ Computer
Science, vol. 1, p. e31, 2015.

[6] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science, no. 5923, pp. 81–85, 2009.



[7] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder–Mead simplex method in low
dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–
147, 1998.

[8] S. Dadashi, H. G. McClelland, and A. Kurdila, “Learning theory
and empirical potentials for modeling discrete mechanics,” in 2017
American Control Conference (ACC), May 2017, pp. 4466–4472.

[9] D. E. Chang, “Controlled lagrangian and hamiltonian systems,” Ph.D.
dissertation, California Institute of Technology, 2002.

[10] S. Prajna, A. van der Schaft, and G. Meinsma, “An LMI approach to
stabilization of linear port-controlled Hamiltonian systems,” Systems
& Control Letters, vol. 45, no. 5, pp. 371 – 385, 2002.

[11] R. M. Murray, “Nonlinear control of mechanical systems: A lagrangian
perspective,” Annual Reviews in Control, vol. 21, pp. 31–45, 1997.

[12] L. Rodrigues, “Lyapunov stability of pseudo euler-lagrange systems,”
in 2012 20th Mediterranean Conference on Control Automation
(MED), July 2012, pp. 416–420.

[13] R. Ortega, J. A. L. Perez, P. J. Nicklasson, and H. Sira-Ramirez,
“Passivity-based control of euler-lagrange systems: mechanical, elec-
trical and electromechanical applications,” 2013.

[14] R. Ortega, A. Van Der Schaft, B. Maschke, and G. Escobar, “Inter-
connection and damping assignment passivity-based control of port-
controlled Hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–
596, 2002.

[15] M. Ahmadi, A. Israel, and U. Topcu, “Safety assessment for
physically-viable data-driven models,” in 2017 56th IEEE Conference
on Decision and Control (CDC), Melbourne, Australia, Dec 2017.

[16] J. E. Marsden and M. West, “Discrete mechanics and variational
integrators,” Acta Numerica, vol. 10, pp. 357–514, 2001.

[17] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symme-
try: A Basic Exposition of Classical Mechanical Systems. Springer,
2010.

[18] S. Sahni, “Computationally related problems,” SIAM Journal on Com-
puting, vol. 3, no. 4, pp. 262–279, 1974.

[19] E. Noether, “Invariante variationsprobleme,” Nachrichten von der
Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-
Physikalische Klasse, vol. 1918, pp. 235–257, 1918.

[20] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduc-
tion to Robotic Manipulation, 1st ed. Boca Raton, FL, USA: CRC
Press, Inc., 1994.

[21] G. Smirnov, Introduction to the Theory of Differential Inclusions.
American Mathematical Society, 2002.

[22] A. F. Filippov, Differential Equations with Discontinuous Right-Hand
Sides, ser. Mathematics and Its Applications. Kluwer, 1988.

[23] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation, 2004, pp. 284–289.

[24] E. D. Andersen and K. D. Andersen, “The MOSEK optimization
software,” EKA Consulting ApS, Denmark, 2012.

[25] E. Ott, Chaos in Dynamical Systems, 2nd ed. Cambridge University
Press, 2002.

[26] F. Tajaddodianfar, H. N. Pishkenari, M. R. H. Yazdi, and E. Maani,
“On the dynamics of bistable micro/nano resonators: Analytical solu-
tion and nonlinear behavior,” Communications in Nonlinear Science
and Numerical Simulation, vol. 20, no. 3, pp. 1078 – 1089, 2015.

[27] R. Tedrake, “Underactuated robotics: Algorithms for walking,
running, swimming, flying, and manipulation,” 2016, Lecture Notes.
[Online]. Available: http://underactuated.mit.edu/

[28] A. Herbert-Voss, M. J. Hirn, and F. McCollum, “Computing mini-
mal interpolants in c1,1(Rd),” Revista Matematica Iberoamericana,
vol. 33, no. 1, 2017.

[29] J. P. Aubin and A. Celina, Differential Inclusions. Springer-Verlag,
Berlin, 1984.

APPENDIX

A. Evolution of Error Bounds Over Time

Assuming that M is constant and invertible, for any selec-
tion of (24) (any solution for fixed εL), we have co{F} = F
as a single-valued map and

‖F (q2, ·, u(t)− F (q1, ·, u(t)‖ ≤ l1(t)‖q2 − q1‖, ∀t ≥ tN ,

and

‖F (·, q̇2, u(t)− F (·, q̇1u(t)‖ ≤ l2(t)‖q̇2 − q̇1‖, ∀t ≥ tN ,
where (qi, q̇i) ∈ TQ, i = 1, 2. For constant M ,
following the procedure described in [29, p. 119] us-
ing Gronwall inequality, we can show that ‖q̇ − q̇a‖ ≤∫ t
tN
|M−1εL|e

∫ t
s
l1(θ) dθ ds, and

‖q−qa‖ ≤
∫ t

tN

(∫ τ

tN

|M−1εL|e
∫ τ
s
l1(θ) dθds

)
e
∫ t
τ
l2(ζ) dζ dτ,

where (·)a denotes the trajectory when εL ≡ 0. Defining
l̄1 = supt≥tN l1(t) and l̄2 = supt≥tN l2(t), we calculate

‖q̇ − q̇a‖ ≤
|M−1ε̄L|

l̄1

(
el̄1(t−tN ) − 1

)
, t ≥ tN ,

and

‖q − qa‖ ≤
|M−1ε̄L|

l̄1

(
el̄1(t−tN ) − el̄2(t−tN )

l̄1 − l̄2

+
1− el̄2(t−tN )

l̄2

)
when l̄1 6= l̄2 and

‖q−qa‖ ≤
|M−1ε̄L|

l̄1

(
(t−tN )el̄2(t−tN )−1− el̄2(t−tN )

l̄2

)
,

when l̄1 = l̄2.

B. Proof of Proposition 1
The set-valued map co{F} is defined as the convex hull

of a finite set, i.e.,

co{F} = α

(
−M−1(q, q̇)C(q, q̇) q̇ −M−1(q, q̇)V (q, q̇)

+M−1(q, q̇)B(q)u+M−1εL

)
+ ᾱ

(
−M−1(q, q̇)C(q, q̇) q̇ −M−1(q, q̇)V (q, q̇)

+M−1(q, q̇)B(q)u+M−1ε̄L

)
(29)

with α, ᾱ ∈ [0, 1], and ᾱ + α = 1. Hence, co{F} is
closed and convex. It is also measurable in t, since u(t)
is measurable in t and F is an affine function of u for all
t ≥ tN . Moreover, it is an upper hemi-continuous function
of q and q̇, since M > 0 and L̂ is the finite weighted sum of
twice differentiable bases φi. Finally, if there exist a function
C ∈ L1([tN , T ],Rn) such that |co{F}(·, ·, t)| ≤ C(t) for all
t ∈ [tN , T ], then from [21, Theorem 4.7, p. 102], existence
of solutions to (24) follows.

Furthermore, the mapping co{F} is one-sided Lipschitz,
i.e., it satisfies

(x1−x2)′ (co{F}(x1, u)− co{F}(x2, u)) ≤ l(t)‖x1−x2‖2,
for some l : R≥0 → R≥0 and all t ≥ tN , x1 and x2,
with x = (q, q̇)′, which follows from the fact that co{F}
is a convex hull of differentiable functions and affine in
u ∈ L∞([0, T ), U) for all T ≥ TN . Then, by [22, Theorem
1, p. 106], we conclude that (24) is admits a unique solution.


