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Abstract – Traveling Wave Ultrasonic Motors (TWUSMs) possess extreme nonlinear properties 
such as dead-zone and saturation reverse effect, which are reliant on the driving conditions. 
These characteristics make modeling and control of TWUSMs quite problematic. In this paper, a 
new scheme for the identification of TWUSM’s Hammerstein model consisting of a nonlinear 
static function followed by a linear dynamical model is introduced. The nonlinear static function 
is identified using the Bezier–Bernstein polynomial functions. The identification method is based 
on a hybrid scheme including the inverse de Casteljau algorithm, the least squares method, and 
the Levenberg-Marquart (LM) algorithm. Simulation results and their validation with the data 
derived from experiments demonstrate the efficiency of the proposed scheme. Copyright © 2011 
Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

( )tϕ  Phase difference of applied voltage 

( )tω  Angular velocity of rotor 

( )y t  Hammerstein model output 

( )tη
 

Gaussian random noise with zero mean and 
variance 2σ  

( )u t  Hammerstein model input 

( )V t  Nonlinear subsystem output in Hammerstein 
model 

an  Input lag for linear subsystem of Hammerstein 
model 

bn  Output lag for linear subsystem of Hammerstein 
model 

mk  Steady state gain of TWUSM dynamical 
behavior  

τ  Time constant of TWUSM dynamical behavior 
( )d

jB ⋅

 

d th order Bezier-Bernstein 
basis function 

jU  Horizontal coordinate 

jV  Vertical coordinate 

jP  Predetermined control points (knots) 

( )ˆ tω  Estimated angular velocity of rotor 

J  Jacobian Matrix 
µ  Damping parameter of the LM algorithm 

lmh  Step of the LM algorithm 

gnh  Step of the Guass-Newton Algorithm 

λ  Gain ratio of the LM algorithm 
 

I. Introduction 
Ultrasonic motors (USMs) are a type of actuators and 

electromechanical devices which exhibit several 
particular excellent performance features such as high 
holding torque, high torque at low speed, silent 
operation, simple structure, compact size and no 
electromagnetic interference [1]. Due to such 
characteristics, USMs have been widely used in 
numerous practical applications, e.g., in robots, medical 
instruments, cameras, aeronautics, MEMS and many 
others [2]. Several types of piezoelectric ultrasonic 
motors (PEUM) have been suggested and designed. The 
large family of USMs is mostly categorized by two 
distinct methods. USMs are distinguished based on their 
functionality into two major groups: linear and rotary 
motors. Another classification approach is established 
upon the type of the propagating wave in the stator of 
USMs. With this classification, standing wave and 
traveling wave USMs can be identified. The advantages 
and various applications of traveling wave ultrasonic 
motors (TWUSMs), compared to other types of USMs, 
have attracted more research attention to them [2].  

 The modeling of Motors has been subject to several 
research activities and investigations [3]-[8]. Existing 
modeling methods for TWUSMs are mostly 
accomplished on the basis of equivalent circuit methods 
[1], [9]–[10], analytical approaches [11]–[13] and finite 
element modeling (FEM) [14]. Recently, black box 
models for TWUSMs based on Hammerstein structure 
were also suggested [15], [16]. However, there are a 
number of serious drawbacks to these models. The 
method put forward in [16] is established upon “Try and 
Error”. The proposed algorithm in [15] depends on 
amplitude as the input for modeling, which is not a 
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conventional method for controlling TWUSMs. 
Moreover, both methods lack computational simplicity, 
they are significantly time consuming, and deficient in 
having a uniform formula for backward and forward 
rotation directions of TWUSM. 

The Hammerstein model is composed of a nonlinear 
static memoryless subsystem which is in series with a 
linear dynamic block. Thus far, the Hammerstein model 
has received major attention in modeling a myriad of 
nonlinear systems including chemical processes, DC/DC 
convertors, electrically stimulated muscles, actuators, RF 
transmitters, stretch reflexes and etc. [17]-[24]. As a 
consequence of this wide variety of applications, 
different identification algorithms for Hammerstein 
models are vastly addressed in literature [25]. One 
avenue that the researchers have followed in their quest 
to identify Hammerstein systems is by the means of 
Bezier-Bernstein approximation. Hong and Mitchel [26] 
were the first to propose such identification algorithm for 
SISO Hammerstein systems. Albeit their approach was 
successful in identifying numerical examples, it suffered 
from several weak points which made it almost 
impossible to be applied for identifying real world 
nonlinear processes. In the first place, the algorithm only 
considered the delayed versioned of the inputs to the 
nonlinear subsystem, whereas in most practical cases the 
inputs to the nonlinear blocks are not delayed. A more 
subtle disadvantage is that the Gauss-Newton algorithm 
used to estimate the nonlinear coefficients is, up to a 
point, slow, inaccurate, and quite sensitive to the choice 
of initiating knots. 

In the proposed scheme in this paper, the 
Hammerstein model is considered in a rather 
comprehensive mode, that is, both the delayed and un-
delayed versions of the input appear in the system model. 
Additionally, the Levenberg-Marquart algorithm is 
utilized for estimating a mixture of the nonlinear and 
linear parameters. The LM algorithm has been previously 
applied in many nonlinear least squares problems 
ranging from applications in nuclear to biomedical 
engineering [22]-[27].  

The aim of this paper is to introduce a new 
Hammerstein based model for TWUSM. The chief virtue 
of the proposed scheme is that given an input/output data 
set from a TWUSM, the model can be readily identified. 
Whereas, other identification methods for TWUSM 
require partial or complete modification when the system 
is changed or the conditions are altered. The nonlinear 
subsystem in Hammerstein model is parameterized by a 
Bezier curve, which is a linear combination of a set of 
Bernstein basis functions. These Bernstein basis 
functions are fabricated over the input data by exploiting 
the inverse de Casteljau algorithm [28]. The remaining 
parameters in the model are approximated using the least 
squares algorithm and the Levenberg-Marquart (LM) 
algorithm subject to constraints. 

The balance of this paper proceeds as follows. In the 
subsequent section, a brief discussion on the operating 

principles of the TWUSM is provided and then the 
Hammerstein model for TWUSM is outlined. The 
proposed identification algorithm is discussed in section 
III. Section IV considers the descriptions of the 
implemented experimental set-up. Simulation results and 
their verification with data from experiments are 
presented in section V. The paper ends with conclusions 
in section VI. 

II. Traveling Wave Ultrasonic Motor 
II.1. Operating Principle 

Fig. 1 shows the cutaway view of a typical USR60 
traveling wave ultrasonic motor, as discussed in this 
paper. The motor consists of two basic parts: the stator 
vibrates with a frequency in the ultrasonic range, and the 
rotor is driven by the stator via frictional forces. Stator is 
composed of an elastic body and a thin piezo-ceramic 
ring which is bonded under the elastic body. The piezo-
ceramic ring has the function of exciting traveling 
bending waves and is shown in Fig. 2. 

 

 
 

Fig. 1. Cutaway view of Shinsei USR60 TWUSM 
 

 
 

Fig. 2. The piezoceramic ring of the experimental ultrasonic motor 
 
The ring is divided into two halves: phase A and 

phase B. These two phases are separated by a sensor and 
ground parts which are a quarter and 3 quarters of a 
wavelength, respectively. Each phase (A or B) includes n 
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segments. Each segment is a half wavelength and 
polarized adversely with respect to the adjacent one. 
Phase A and phase B are a quarter of the wavelength out 
of phase, spatially. The phases are excited by two 
sinusoidal voltages which are temporally 90◦ out of 
phase. Therefore, a traveling wave is generated and the 
particles of the stator surface move elliptically.  

The sensor section is used for measuring the 
amplitude and the phase of the traveling wave which is 
used to control the excitation of the piezo-ceramic ring. 
The rotor is pressed against the stator by a disk spring, 
and a thin contact layer is bonded to the rotor in the 
contact region. Therefore, the vibration of the stator with 
high frequency and small amplitude is rectified into the 
lower frequency macroscopic rotary motion of the rotor 
by friction. The speed of the TWUSM can be controlled 
by the frequency of the two-phase voltages, the 
amplitude of the two-phase voltages and the phase 
difference between the two-phase voltages. More 
information about the working principles of traveling 
wave ultrasonic motors can be found in [1]. 

II.2. Hammerstein Model Structure 

Generally, the Single-Input Single-Output (SISO) 
Hammerstein model can be defined by: 

 

 

( ) ( ) ( )
( ) ( )( )

( )( ) ( )( ) ( )
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The gain of the linear subsystem is thus given by: 
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In case of TWUSMs, the proposed Hammerstein 

model is modified according to the motor driving 
characteristics. Phase difference is considered as the 
input to the Hammerstein model, inasmuch as it is a 
commonplace control input for TWUSM. Not only can 
phase difference be applied for rotation in both 
directions, but also it can be used to modify motor speed. 
Besides, the rotor speed is suggested as the output of the 
Hammerstein model. The Hammerstein system for 
TWUSM can be modeled by: 
 

 
( ) ( ) ( )( ) ( )

1 0

a bn n

i k
i k

t a t i b v t k tω ω ϕ η
= =

= − − + − +∑ ∑  (3) 

 
The intermediate signal ( )v t  is the output of the 

nonlinear subsystem which cannot be measured. Given 

an observational (phase difference /motor speed) data set 

( ) ( ){ } 1
N
t

t , tϕ ω
=

, where ( )1t ,N∈ denotes the sampled 

times, the goal is to identify the nonlinear gain function  
 
and subsequently the Hammerstein model.  

TWUSM exposes a dynamical behavior that can be 
explained by the following transfer function [29], [30]: 

 

 

( )
( ) 1

ms k
V s s
ω

τ
=

+
 (4) 

 
The typical values of mk andτ  for USR60 are 10.25 

and 0.0035 sec, respectively. It is assumed that mk
 
is 

included in the nonlinear gain function; thus, the gain of 
the linear subsystem could be maintained as one. The 
Hammerstein model for TWUSM is illustrated in Fig. 3. 
 

 
 

Fig. 3. The Hammerstein model structure for TWUSM 

III. The Identification Algorithm 
III.1. Modeling of the Nonlinear Gain Function Using 

Bezier-Bernestein Polynomials 

Bezier curve is a parametric curve characterized by 
Bernstein basis functions [31]-[33]. With a set of preset 
two dimensional control points, the Bezier curve can be 
readily constructed through the de Casteljau algorithm. 
The univariate Bernstein polynomial basis functions 

( )d
jB x

 
are the expansion of ( )1 dx x+ −⎡ ⎤⎣ ⎦  [31]-[37], 

described by: 

 
( ) ( )1 d jd j

j
d

B x x x
j

−⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (5) 

 
where j  and d  are nonnegative integers satisfying 

dj ≤  over the region [ ]0 1x ,∈ . The total number of the 
univariate thd  order Bernstein polynomials is 1+d . It 
has been shown that Bernstein polynomials can be 
computed using the recursion given below [32]: 
 

 
( ) ( ) ( ) ( )1 1

11d d d
j j jB x x B x x B x− −

−= − +  (6) 

 ( )*ψ , which is an arbitrary nonlinear function, can be 
approximated using the Bezier-Bernstein polynomials as: 
 

 
( )( ) ( )( )( )

0

d
d
j j

j
u t B x u tψ δ

=

= ∑  (7) 
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where jδ ’s are the weights to be determined from the 

input-output data, ( ) 1u t ∈ℜ is the input sample at the 

time t , and ( )( )( )d
jB x u t , 0 1j , , ,d= … denote the 

corresponding thd  order Bezier-Bernstein basis 
functions. To determine these basis functions, one has to 
perform the one-to-one mapping: 
 
( )*Ω : ( ) ( )( ) ( )( ) ( )( ) ( )0 1u t min u t ,max u t x u t ,⎡ ⎤∈ → ∈⎣ ⎦

  
The univariate de Casteljau algorithm, which is widely 
implemented in Bezier curve construction, can realize the 
mapping: 
 

( )1 *−Ω : ( ) ( ) ( )( ) ( )( )0 1x , u x min u t ,max u t⎡ ⎤∈ → ∈⎣ ⎦  
 

The de Caseljau algorithm is described next.  
With a set of predetermined control points (knots) in 

2-Dimensional space 2T
j j jP U ,V⎡ ⎤= ∈ℜ⎣ ⎦ , 0 1j , , ,d= … , 

the de Casteljau algorithm is a recursion defined over 
these control points represented as [32]: 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
11r r r

j j jP x x P x x P x− −
+= − +  (8) 

 
where: 
 

( ) ( )0
j jP x P= , 1 2r , , ,d= … , 0j , ,d r= −… and

( ) ( ) ( ) Tr r( r )
j j jP x U ,V⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 
It can be concluded that the main idea of the de 

Casteljau algorithm is upon recursively subdividing a 
curve and adding points to refine the knots. Note that if 
only the information about one of the coordinates is 
available, still recursion (8) is valid and defined as: 
 

 
( ) ( ) ( ) ( ) ( ) ( )1 1

11 r r( r )
j j jU x x U x xU x− −

+= − +  (9) 
 

However, as stated earlier, the inverse procedure of 
the above algorithm is required to accomplish the 
mapping from ( ) ( )( ) ( )( )u t min u t ,max u t⎡ ⎤∈ ⎣ ⎦  to 

( )( ) ( )0 1x u t ,∈ , which is known as the inverse de 
Casteljau algorithm. Previously, the inverse of de 
Casteljau algorithm has been proposed through iterative 
error feedback [27]. 

Considering the phase difference ( )tϕ as the input, 
the inverse de Casteljau’s algorithm is applied to map 

each input data to [ ]0 1x ,∈ , so that ( )( ) 1
N
t

x tϕ
=

 can be 

utilized to fabricate the Bernstein polynomial basis 

functions ( )( )( ) 1

Nd
j t

B x tϕ
=

. 

The algorithm is described as follows [27]: 
given a desired mapping point ( )tϕ , a set of knots 

[ ] ( ) ( )0 0j d, min ,max , j , ,dϕ ϕΦ ∈ Φ Φ ∈ =⎡ ⎤⎣ ⎦ … , are 
preset. Denote the iteration step in the following 
procedure as n  
 
A. Initially, set 1=n , and x  as a random number in the 

interval )1,0( . 
B. Calculate the corresponding first component of 

Bezier curve points, ( )r
jΦ , using the de Casteljau 

recursive formula: 
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
11r r r

j j jx x x x x− −
+Φ = − Φ + Φ  (10) 

 
 until dr =  , producing an intermediate approximated 

point ( )( )nˆ xϕ : 

 
  ( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

0 11 d dn n n n nˆ x x x x xϕ − −= − Φ + Φ  (11) 

 
C.  The difference between the desired point ϕ  and the 

estimated point ( )( )nˆ xϕ is used to adjust the search 

direction of x . A new point is created as  
 

 

( )( ) ( )( ) ( )( )n n nˆ ˆx x xϕ ϕ γ ϕ ϕ⎡ ⎤= + −⎢ ⎥⎣ ⎦
�  (12) 

 
where γ , the learning rate, is a very small positive 
integer ( 10 ≤≤ γ ).  
 
D. The desired solution of x  at iteration step )1( +n  is 

computed such that )(~ )(nxϕ is the first order Bezier 
point with respect to the two end knots 

( ) ( )1
0
d x−Φ and ( ) ( )1

1
d x−Φ . The solution is therefore 

given by: 
 

 ( )
( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1

01
1 1

1 0

dn n
n

d dn n

x x
x

x x

ϕ −

+
− −

−Φ
=
Φ −Φ

�
 (13) 

 

The procedure continues until ( )( )nxϕ ϕ ε− ≤� , 

where ε is an arbitrarily small positive number close to 

zero. If ( )( )nxϕ ϕ ε− ≤� set ( )nx x= . Otherwise, set 

1+= nn and go to step 2. 
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Once the input data is mapped to )1,0( , one can 
fabricate the Bernstein basis functions 

( )( )( ) 1

Nd
j t

B x tϕ
=

according to the initially chosen 

knots djj ,,0, …=Φ . Subsequently, the estimated 

nonlinear function ( )dv̂ t  can be explained by: 
 

 ( ) ( )( )( )
0

d
d

d j j
j

v̂ t B x tϕ δ
=

= ∑  (14) 

 
However, jδ , dj ,,0 …= still has to be calculated. 

The approximated output ( )tω can be expressed by 
substituting equation (14) in (3): 
 

 

( ) ( ) ( )( )( )

( )( )( )

0
1 0

0

a

b

n d
d

i j j
j j

d
d

n j j b
j

ˆ t a t i b B x t

b B x t n

ω ω δ ϕ

δ ϕ

= =

=

= − − + +

+ + −

∑ ∑

∑…
 (15) 

 
Denote: 

 

( ) ( ) ( ) ( )( )1 a b
ˆ ˆˆ ˆt , , t n , t , , t n ,a,b,ω ω ω ϕ ϕ δ− − − − −… …  

 
where ω̂ is the estimated Hammerstein model output, 

1 anâ a , ,a⎡ ⎤= ⎣ ⎦… , 1 bnb̂ b , ,b⎡ ⎤= ⎣ ⎦… , and [ ]0 d
ˆ , ,δ δ δ= … . 

The approximation accuracy can be increased as the 
sum of square error is minimized: 

 

 
( ) ( ) 2

1

N

t

ˆSSE t tω ω
=

= −⎡ ⎤⎣ ⎦∑  (16) 

 
With this choice of cost function at hand, the 

parameter identification challenge is retranslated to a 
nonlinear least squares problem. It is obvious that ω̂  is 
not linear to b̂ and δ̂ yet it can be translated as a linear 
regression from ( )tω  in vector â . The proposed 
parameter estimation procedure is performed in two 
stages: (a) based on the estimated resultant model 
structure using the Bezier–Bernstein polynomial 
functions, the least squares algorithm is applied to 
estimate the parameters in the autoregressive (AR) part 
of the linear subsystem; (b) the remaining parameters are 
approximated using the LM algorithm subject to the 
constraint of unit gain [38]. 

III.2. Determining the Parameters jâ
 
Using the Least 

Squares Method  
Eq. (3) can be rewritten as matrixes in regression 

form: 

 
W Hω = Θ+  (17) 

 
with: 

 

( )( )
( )( )

( )( )

1

2

w F

w F
W

w F N

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
 (18a) 

 
where: 
 

 

( )( )
( ) ( ) ( )( )( )

( )( )( ) ( )( )( )
( )( )

0

0

1 1

1

a b

d
a

d d
b d b

n d n

w F t

t , , t n ,B x t ,

,B x t n , ,B x t n

ω ω ϕ

ϕ ϕ

+ + +

=

⎡= − − − −⎣
⎤− − ⎦

∈ℜ

…

… …
 (18b) 

 
and: 

 

( ) ( ) ( )
( ) ( )( )

0 0 0 0

1 1

b

a b
b

T
d n

T n d n
n d

â , b , , b , , b ,

, b

δ δ δ

δ + + +

⎡Θ = ⎣

⎤ ∈ℜ⎦

… …

…
 (18c) 

 ( ) ( )1 TH , , Nη η= ⎡ ⎤⎣ ⎦… is the presumed Gaussian 
noise associated with the system. The least squares 
solution of Θ is: 

 

1T Tˆ W W W ω
−

⎡ ⎤Θ = ⎣ ⎦  (19) 

 
from (19) one can simply derive â , which is a sub vector 
of  Θ̂ . At this point, a sequence ( )r t as a collateral 
model output, based on the least squares solutions of â , 
and the output data is generated: 
 

 
( ) ( ) ( ) ( )1 1 n aˆ ˆr t t a t a t nω ω ω= + − + + −"  (20) 

 
However, the intermediate model output ( )r t , still 

needs to be interpreted by the unknown parameters 
b andδ . The approximated version of ( )r t  based on 
Bezier-Bernstein Basis functions is: 
 

 

( ) ( )( )( )

( )( )( )

0
0

0
b

d
d

j j
j

d
d

n j j a
j

r̂ t b B x t

b B x t n

δ ϕ

δ ϕ

=

=

= +

+ + −

∑

∑"
 (21) 

 
 

Proposition 1: It is postulated that W  is nonsingular. 

Consequently, the minimization of ( ) ( ) 2

1

N

t

ˆt tω ω
=

−⎡ ⎤⎣ ⎦∑ is 
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identical to that of ( ) ( ) 2

1

N

t

ˆr t r t
=

−⎡ ⎤⎣ ⎦∑ . The proof for 

proposition 1 is available in [26]. 

III.3. Method Applying the Levenberg-Marquart 
Algorithm to approximate b  and δ  

LM algorithm is a modified version of the Gauss-
Newton algorithm which converges to an optimal 
solution through an iterative procedure. A chief 
disadvantage of the Gauss-Newton algorithm which 
arose in many practical cases is that the Jacobian matrix 
turns out to be singular; therefore, a valid inverse matrix 
could not be obtained. Since the cost function is in the 
quadratic form, it is convenient to employ the LM 
algorithm. 

The LM algorithm introduces a new multi-functional 
parameter µ called the damping parameter. The LM step 
is defined as follows [33]-[35]: 

 

 { } 1T T
lmh J J I J Fµ

−
= +  (22) 

 

where I is a unit matrix with the same size as TJ J , and 
F is the function to be minimized. 
Including the damping parameter leads to several 
encouraging outcomes [41]: 
a. For all positive values of the damping parameter the 

coefficient matrix is positive definite, and 
consequently lmh is decent direction. 

b. For large values of µ we have 
 

 1 1T
lmh J F F

µ µ
′= − = −  (23) 

 
 which is a small step in the steep decent direction. A 

desirable feature, if the current intermediate solution 
is far from the answer. 

c. For small values of the LM step, lm gnh h= . This 
happens in the final steps when the algorithm is 
converging. 

It can be comprehended from the above corollaries 
that the damping parameter is able to influence both the 
direction and the size of a step. So, a nonlinear 
optimization algorithm without a specific line search can 
be achieved. 

Another important concept in the LM algorithm is the 
gain ratio λ . Gain ratio is also commonly used in trust 
region algorithms such as Powell’s dog leg method [38], 
[41]. λ  is defined as the ratio between the actual and 
predicted decrease in function value, and it can be 
computed using the following equation: 

 

 
( ) ( )
( ) ( )0

F x F x h
L L h

λ
− +

=
−

 (24) 

where the denominator is the gain predicted by the linear 
model. In the course of the LM algorithm, the damping 
parameter is increased as the gain ratio becomes small, 
since ( )L h is a poor estimation of ( )F x h+ . On the 
other hand, a large value of the gain ratio indicates a 
good approximation; therefore, the damping parameter is 
decreased. The gain predicted by the linear model is 
calculated as: 
 

 

( ) ( ) ( )
( ) ( )( )

( )( )

0 0 5

0 5 2

0 5

T T T T
lm lm lm lm

T T T
lm lm

T T
lm lm

L L h h J F x . h J h

. h J F x J J I I h

. h h J F x

µ µ

µ

− = − − =

= − − + − =

= −

 (25) 

 
One should note that both ( )T

lmh JF x− and T
lm lmh h are 

positive; thus, ( ) ( )0 lmL L h− is also positive and 
nonzero. A comprehensive discussion of the LM 
algorithm can be found in [41]. Note that the constraint 
of unit gain resulting from the special structure of the 
Hammerstein model should be taken into account so an 
enhanced algorithm could be achieved. In other words, 
the algorithm would avoid being trapped in local minima 
[26], [38]. Using (18) and (19) the model residual is 
represented as ( ) ( ) ( )ˆ ˆ ˆe b, ,t r t r tδ = − . 

The Jacobian matrix J with respect to 
TT Tb ,δ⎡ ⎤

⎣ ⎦ is 

given by: 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

0

0

1 1

2 2

1 1

2 2

b

b

b

n

n

n

d

d

d

ˆ ˆˆ ˆe b, , e b, ,
b b

ˆ ˆˆ ˆe b, , e b, ,
b bJ

ˆ ˆˆ ˆe b, ,N e b, ,N
b b

ˆ ˆˆ ˆe b, , e b, ,

ˆ ˆˆ ˆe b, , e b, ,

ˆ ˆˆ ˆe b, ,N e b, ,N

δ δ

δ δ

δ δ

δ δ
δ δ

δ δ
δ δ

δ δ
δ δ

∂ ∂⎡
⎢ ∂ ∂⎢
⎢ ∂ ∂
⎢
∂ ∂= ⎢

⎢
⎢
⎢ ∂ ∂
⎢∂ ∂⎢⎣
∂ ∂ ⎤

⎥∂ ∂ ⎥
⎥∂ ∂
⎥∂ ∂ ⎥
⎥
⎥

∂ ∂ ⎥
⎥∂ ∂ ⎦

…

…

… … …

…

…

…

… … …

…

 (26) 

 
where: 
 

 
( ) ( )( )( )

0

0 1

d
d
j j

i j

b

ˆ ˆ ˆe b, ,t B x t i
b

i , , ,n

δ ϕ δ
=

∂
= −

∂

=

∑
…

 (27a) 
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 ( ) ( )( )( )
0

0

d
d
j h

j j

ˆ ˆˆe b, ,t B x t i b

j , ,d

δ ϕ
δ =

∂
= −

∂

=

∑
…

 (27b) 

 
The algorithm is described as follows: 

I) Set 0=n , α=v  , βµ = . b̂ and δ̂ are generated as 
random vectors with appropriate dimensions. It is worth 
noting that the corresponding length of the vectors b̂ , 
and δ̂ is 1+bn , and 1+d , respectively. 
 
II) Apply the Levenberg-Marquart algorithm subject to 
the normalization constraint in order to maintain the gain 
of linear subsystem as one.  
 

II.a)  LM step 
 

 ( ) ( )( ) ( )Tn n nA J J=  (28a) 

 

 ( ){ } ( )( )1 Tn n
lmh A I J eµ

−
= +  (28b) 

              
 

 
( )

( )

( )

( )

1

1

n n

lmn n )

ˆ ˆb b
h

ˆ ˆδ δ

+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (28c) 

 

where ( ) ( )1
Tˆ ˆˆ ˆe e b, , , ,e b, ,Nδ δ⎡ ⎤= ⎣ ⎦… . 

 
II.b) Apply the constraint of the unit gain (parameter 
normalization). Calculate Ĝ  the estimated gain of the 
linear subsystem: 

 

 ( )

( )1

1 0

1
1

b

a

n
n

i
n i

n

j
j

b̂
Ĝ

a

+

+ =

=

=

+

∑

∑
 (29) 

 
Then: 

 
( )

( )

( )

( ) ( ) ( )

1
1

1

1 1 1

n
n

n

n n n

b̂b̂
Ĝ

ˆ ˆ ˆGδ δ

+
+

+

+ + +

←

←

 (30) 

 
Subsequently, calculate: 

 

 
( ) ( )

( ) ( )( )

2 21

0 5

n n

n nT T
lm lm

e e

. h h J e
λ

µ

+−
=

−
 (31) 

 
II.c) If 0>λ  meaning the solution matrix has a better 

estimation, step is accepted. Then: 
 

 
( )

( )

1

1

n

n

b̂
X

δ̂

+

+

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (32a) 

 

 ( ) ( )( ) ( )1 1 1Tn n nA J J+ + +=  (32b) 

 
where X denotes the solution matrix. Afterwards, the 
parameters and the estimation error matrix are updated  

 
 ( ) ( ) ( )( )31 1 3 1 2 1n n max / ,µ µ λ+ = − −  (33a) 

 
 v α=  (33b) 
 
 ( ) ( )1n ne e+ =  (33c) 
 

On the other hand, ifλ is not positive, the step is not 
accepted and µ  is renewed: 

 
 ( ) ( )1n nµ µ υ+ =  (34a) 
 
 ( ) ( )1n nυ α υ+ =  (34b) 
 

The algorithm is continued at step 2 till the 

approximation criterion, i.e. ( )2

1

N

t
e t ξ

=

<∑ , 

where 0 1ξ< << , is satisfied. 
A simple flowchart of the overall identification 

algorithm is depicted in Fig. 4. 

IV. Experimental Setup 
A testbed was designed to assemble the piezo-electric 

motor (PEM) and the necessary instruments. A picture of 
the experimental testbed is given in Fig. 5. On the 
testbed, the motor is mounted on a shaft which is 
connected to the sensors. A stop block is boarded on the 
shaft to prevent the shaft from sliding through the 
bearing when the normal force is applied to the motor. 
The stop block is designed such that it only touches the 
rotating part of the bearing, so no extra friction is added. 
A support for the shaft between the force gauge and the 
motor is placed on a carriage which is kept on ball 
bearings to reduce resistance. 

The velocity of the motor is measured using an 
HEDS-9040 encoder with an HEDS-5140 A11 encoder 
wheel. The encoder is connected to the 6071EDAQ-card. 
MATLAB is used to process the data and calculate the 
exact position of the motor. The encoder and the encoder 
wheel are located at the right most aluminum block of 
the experimental testbed. 
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Fig. 4. A simple flowchart of the overall algorithm 
 

 
 

Fig. 5. A picture of the experimental testbed equipped with the sensors 
 

The driver for the encoder wheel is implemented in 
two functions: an ordinary function which sets up the 
encoder and starts the measuring, and a call back 
function which is called every 1000 samples calculating 
the average speed over these 1000 samples. The speed 
can then be read through a global variable, which is 
updated at each run of the call back function. Two 
sinusoidal excitation signals are necessary to drive the 
motor. For this purpose, a signal generator board is 
designed. The board includes a PIC microprocessor, two 
signal generators, and an analogue circuit. The PIC is 

controlled from PC software via a RS232 connection. 
The PIC manages the functionality of the signal 
generators by sending certain commands to them. The 
signal generators produce square waves with a frequency 
determined by the micro-controller. The analog circuit 
converts the square waves to sinusoidal waves and 
amplifies it. 

By sending proper commands to the micro-controller, 
the frequency and the phase shift between the signals are 
adjustable. The amplitude of the output signals is 
manually adjustable by changing the input voltage of the 
board. The overall driving and testbed preparations are 
illustrated in Fig. 6.  

 
 

Fig. 6. Schematic drawing of the designed experimental setup 

V. Results and Discussions 
By discretizing Eq. (4), the input and output lag 

values ( an and bn ) for the dynamical subsystem of 
TWUSM can be simply computed as 1 and 0, 
respectively [23],[24]. About 40 samples of the 
input/output data derived from experiments with USR60 
are used for comparison with the simulation results of the 
proposed identification scheme. The polynomial degree 
of Bezier-Bernstein Basis functions was set to 18d = , 
and a set 19 knots were selected as: 

 

{ } 90 70 50 30 20 10 5
2 1 0 1 2 5 10 20 30 50 70 90k

, , , , , , ,
, , , , , , , , , , ,

⎧ − − − − − − − ⎫⎡ ⎤⎪ ⎪Φ = ⎨ ⎬⎢ ⎥− −⎪ ⎪⎣ ⎦⎩ ⎭
 

 
Note that the proposed scheme is not sensitive to the 

choice of knots, as long as the knots are selected closer 
to each other in the most nonlinear region.The inverse de 
Casteljau algorithm with learning rate 0 01.γ =  was 
applied to map the input data to ( )0 1, . Next, a sequence 

of regressors ( )( )( )d
jB x tϕ , 0 1 18j , , ,= …  were 

generated. Consequently, 19 Bezier-Bernstein basis 
functions were created as illustrated in Fig. 7. It is 
important to note that these functions are quite dense 
where most of the nonlinearity exists (here, the most 
nonlinear part is within [ ]20 20,ϕ ∈ −  around the dead-
zone). 
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Fig. 7. The resultant Bezier-Bernstein Basis functions fabricated from 

the 19 preset knots in section 5 
 

Using the input data, the least squares algorithm as 
discussed in section III.B was applied to estimate the 
vector a . The model auxiliary output ( )r t is formed on 
the basis of the estimated values of a . 

Henceforth, the task of the identification algorithm is 

to minimize  ( )2

1

N

t
e t

=
∑  through the LM algorithm, that is, 

( )2

1

N

t

ˆarg min e t ,χ χ∗

=

⎡ ⎤⎧ ⎫⎪ ⎪= ∀⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦
∑ , subject to 1=G  where 

TT T Ta ,b ,χ δ⎡ ⎤= ⎣ ⎦ . 

One should note thatα should be chosen quite 
carefully. In conventional nonlinear least squares 
problems solved using the LM method, the value ofα  is 
chosen as 2 [41]. However, this choice ofα , fails to 
appropriately approximate the nonlinear parameters in 
the proposed identification algorithm in this paper due to 
the number of parameters to be tuned and the abundance 
of local minimums. A large value of α results in fast 
convergence, the algorithm would get trapped in local 
minima though. For very small values ofα , the LM 
algorithm loses its convergence speed, and , more or less, 
its accuracy. The most suitable value of α was obtained 
empirically as 1.01. This would guarantee less iteration 
cycles, and thus a relatively fast convergence. 
Furthermore, this would lead to a more precise 
estimation of the parameters. Taking into account the 
above considerations, the LM algorithm as discussed in 
section III.C was applied. The resultant sum of square 
errors was obtained as 0 0000535SSE .= . The 
approximated rotor speeds are shown in Figs. 8 and 
estimation errors are provided in Figs. 9.  

 
(a) 

 
(b) 

 
(c) 

 
Figs. 8. The estimated nonlinear function (solid line), and the experimental  data from USR60  (crosses) for different torque values of 0.0 (a), 0.1 (b), 

0.2 (c) at driving frequency of 41kHz 
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(a) 

 
(b) 

 
(c) 

 
Figs. 9. The estimation error per samples associated with different 

torque values of 0.0 (a), 0.1(b), and 0.2 
(c) at driving frequency of 41kHz 

 
Similarly, the simulation was performed for different 

torque values and different driving frequencies. 
The available input/output data were in the range of 

0 90,ϕ ⎡ ⎤∈ ⎣ ⎦
D ; therefore, a set of 11 knots were preset 

{ } [ ]{ }0 10 20 60 65 68 70 75 80 85 90k , , , , , , , , , ,Φ = . 
The constructed Bernstein basis functions are shown 

in Fig. 10.  

The simulation results are also available in Figs. 11-
13. 

According to the results, the proposed algorithm 
shows significant preciseness compared with other 
published identification approaches for TWUSMs. 

 

 
Fig. 10. Bezier-Bernstein Basis functions used to approximate the 
nonlinear gain functions in driving frequencies other than 41KHz 

illustrated in Figs. 7-9 
 

 
Fig. 11(a) 
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Fig. 11(b) 

 
Figs. 11. The estimation error (right), the estimated nonlinear function 
(solid line), and the experimental  data from USR60 (crosses) (left) in 

no load condition associated with  different driving frequency values of 
41.5kHz (a), and 42kHz(b) 

 

 
Fig. 12(a) 

 
Fig. 12(b) 

 
Figs. 12. The estimation error(right), the estimated nonlinear function 
(solid line), and the experimental  data from USR60  (crosses) (left) at 
torque value of 0.1 associated with  different driving frequency values 

of 41.5kHz (a), and 42kHz(b) 
 

 

 
Fig. 13(a) 
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Fig. 13(b) 

 
Figs. 13. The estimation error (right), the estimated nonlinear function 
(solid line), and the experimental  data from USR60  (crosses) (left) at 
torque value of 0.2 associated with  different driving frequency values 

of 41.5kHz (a), and 42kHz(b) 

VI. Conclusion 
This paper presents a new, fast and straightforward 

scheme for the identification of TWUSMs using Bezier-
Bernstein polynomial functions. The inverse de Casteljau 
algorithm is implemented to map the sampled input data. 
Subsequently, the Bezier-Bernstein basis functions are 
formed. Then, using the least squares method followed 
by the LM algorithm, the unknown parameters are 
estimated. For the purpose of comparison, simulation 
results based on the proposed scheme and experimental 
data are also provided, which verified the algorithm’s 
accuracy. Concluding from the results of this study, the 
identification and modeling scheme has proved to be 
able to precisely approximate the nonlinear 
characteristics of TWUSMs. 
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