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ABSTRACT
We present a distributed analysis algorithm for large-scale

hybrid systems based on the accelerated alternating method

of multipliers (ADMM). We consider interconnected hybrid

systems that are composed of continuous dynamics coupled

with discrete dynamics. In particular, we focus on discrete

dynamics that are defined over finite alphabets, e.g., deter-

ministic finite state machines (DFSMs). For such classes of

systems, we propose a method based on dissipativity theory

for compositional analysis that allows us to study stability,

passivity and input-output norms. Furthermore, for systems

with large number of states, we demonstrate how acceler-

ated ADMM can be used to carry out the computations in an

scalable and distributed manner. The proposed methodology

is illustrated by examples.
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1 INTRODUCTION
Over the past decades, we have witnessed a dramatic in-

crease in research on hybrid and cyber-physical systems [1,

2, 17, 18, 31]. Examples of such systems in real-world can

be found in robotics [15], biological networks [20], and in

power systems [41].

The literature is rich in analysis and verification methods

for hybrid systems [3, 21, 27, 42]. Despite the available tools

for the analysis and verification, scalability still poses a chal-

lenge. Therefore, there has been a surge in compositional

analysis techniques. These methods, in general, decompose

the analysis problem of a large-scale hybrid system into

smaller sub-problems, which can reduce the computational

burden significantly. It was shown that dissipativity theory

can be used as a tool for decompositional stability and de-

tectability analysis [38]. This result was further extended

in [23] to present sufficient conditions for passivity and sta-

bility analysis of a class of interconnected hybrid systems

with sums of storage functions. Some well-posedness issues

and input-ouput notions for interconnected hybrid systems

were discussed in [30]. Nonetheless, one issue with the above

compositional methods is that they often do not provide a

computational framework to find the certificates and rely on

ad-hoc analytical techniques to analyze the overall system.

In another vein, several compositional analysis techniques

were proposed based on encoding the hybrid executions in a

logic amenable to satisfiability checking (see the survey [29]).

[19] proposes a method based on bounded error approxima-

tions of the hybrid dynamics and the satisfiability checking

was carried out using the tool Z3. [6] brings forward a veri-

fication method at the intersection of software model check-

ing and hybrid systems reachability, which decomposes the

discrete and the continuous dynamics. However, the latter

approaches based on SMT formulation are undecidable for

general hybrid systems [5] and convergence is not guaran-

teed.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper, we propose a methodology based on accel-

erated ADMM for distributed analysis of hybrid systems

composed of continuous dynamics coupled with a system

defined over finite-alphabets [34–36]. In particular, the dis-

crete dynamics can be in the form of deterministic finite state

machines, which can be used to model software. The frame-

work we formulate is established upon dissipativity theory

and decomposes the analysis problem of the overall hybrid

system into smaller local sub-problems for subsystems. This

method takes advantage of a global storage function which is

the sum of local storage functions. To carry out the computa-

tion in a distributed manner, we use accelerated alternating

method of multipliers (ADMM) [12], which is a variant of

ADMM [10]. To use accelerated ADMM, which has a faster

convergence rate compared to ADMM, we utilize smoothing
techniques [9, 25], which has been used in to improve the

convergence rate of similar first order methods. We also dis-

cuss the effects of restarting accelerated ADMM, which has

shown to improve the convergence rate of similar acceler-

ated algorithms [9, 26]. We show that accelerated ADMM

outperforms conventional ADMM that was used for compu-

tational analysis of continuous dynamical systems [22]. We

illustrate the proposed method by two numerical examples.

This paper is structured as follows. In the following sec-

tion, we present the problem formulation and define notions

of hybrid Lyapunov and storage functions. In Section 3, we

propose a method based on dissipativity for compositional

analysis of the class of hybrid systems under study. The

proposed methodology is illustrated by two examples in

Section 5. Finally, Section 6 concludes the paper and gives

directions for future research.

Notation: R≥0 denotes the set [0,∞). ∥ · ∥ denotes the

Euclidean vector norm onRn . The set of integers are denoted
by Z. For a function f : A → B, f ∈ Lp (A,B), 1 ≤ p < ∞,

implies that

(∫
A | f (t)|pdt

) 1

p
< ∞ and supt ∈A | f (t)| < ∞ for

p = ∞. For symmetric matricesA1, . . . ,An , diaд(A1, . . . ,An)

denotes the diagonalized matrix

diaд(A1, . . . ,An) =


A1 0 0

0

. . . 0

0 0 An

 .
For a vector s ∈ Rns , s ≡ 0 denotes the element-wise equality

to zero.

2 PROBLEM FORMULATION
We propose a method based on dissipativity theory for stabil-

ity and performance analysis of interconnected hybrid sys-

tems. The class of hybrid systems under study are composed

of a continuous subsystem in connection with a subsystem

defined over a finite alphabet. The main motivation for con-

sidering this class of hybrid systems is to model applications

where a continuous system is controlled by a software. In

Section 4, we demonstrate how accelerated ADMM can be

used to undertake the computations in a distributed manner.

Formally, we consider the following class of hybrid sys-

tems

G :



C :

{
Ûx(t) = f (x(t),w(t);p(t))

y(t) = h (x(t);p(t))

D :

{
q(t+) = д (q(t),u(t),x(t))

p(t) = l (q(t),u(t))

q(t0) = q0, x(t0) = x0.

(1)

where x ∈ Rn and q ∈ Q ⊂ N represent continuous and

discrete states. In the continuous module C, f (·, ·;p) : Rn ×

Rm → Rn , f (0,q;p) ≡ 0, ∀(q,p) ∈ Q × P , is a family of

mappings with index p ∈ P ⊂ N and similarly h(·;p) :

Rn → Rny is a family of output mappings. y ∈ Rny and

w ∈ Rm are the continuous outputs and inputs, respectively.

In the discrete module D, д : Q × U × Rn → Q and l :

Q × U → Q. p ∈ P and u ∈ U are the discrete outputs

and inputs, respectively. The sets associated with the discrete

module Q, P and U are assumed to be finite. In the sequel,

we abuse the notation and use q+ to represent q(t+).
The discrete module D can characterize a rich class of

systems defined over finite alphabets [36] and can be used

to model systems ranging from quantizers to deterministic

finite state machines. The hybrid system (1) can also be stud-

ied in the context of hybrid automata [16]. However, note

that for hybrid automata, analysis tools such as Lyapunov

functions or storage functions are not available in general.

We can study the input-output and stability properties of

system (1) by using a dissipativity-type and Lyapunov-type

argument. To this end, we use the notion of hybrid Lyapunov

or storage function, which is described as follows.

Definition 1 (Hybrid Lyapunov Function). A function
V : Rn × Q → R≥0 such that V (0,q) = 0, ∀q ∈ Q, V ∈

C1(Rn) is called a hybrid Lyapunov function for system (1)

with u ≡ 0 andw ≡ 0, if it satisfies the following inequalities

V (x ,q) > 0, ∀x ∈ Rn \ {0}, ∀q ∈ Q, (2)(
∂V (x ,q)

∂x

)T
f (x , 0;p) < 0, ∀x ∈ Rn , ∀q ∈ Q, ∀p ∈ P,

(3)

and

V (x ,q+) −V (x ,q) ≤ 0, ∀x ∈ Rn ,∀q ∈ Q. (4)

Theorem 1. The hybrid system (1) is asymptotically stable
if there exists a hybrid Lyapunov function.

Proof. See Appendix A. □
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Figure 1: Interconnected system with hybrid inputs
(d, µ)T and hybrid outputs (z, ζ )T .

Definition 2 (Hybrid Storage Function). A function
V : Rn × Q → R≥0 such that V ∈ C1(Rn) is called a hybrid
storage function for system (1), if it satisfies the following
inequalities

V (x ,q) ≥ 0, ∀x ∈ Rn ,∀q ∈ Q, (5)

(
∂V (x ,q)

∂x

)T
f (x ,w ;p) ≤Wc (w,y),

∀x ∈ Rn , ∀q ∈ Q, ∀p ∈ P (6)

and

V (x ,q+) −V (x ,q) ≤Wd (u,p), ∀x ∈ Rn ,∀q ∈ Q (7)

where the integrable functions Wc : Rm × Rny → R and
Wd : Q × U → R are the continuous and the discrete supply
rates, respectively.

Theorem 2. The hybrid system (1) is dissipative with re-
spect to the supply ratesWc andWd , if there exists a hybrid
storage function.

Proof. The dissipativity of the continuous dynamics is

standard and follows from integrating (6). The dissipativity

of the discrete dynamics follows from Theorem 3 and Lemma

2 in [37]. □

3 INTERCONNECTION OF HYBRID
SYSTEMS

We consider interconnected systems as illustrated in Fig. 1,

where the subsystems {Gi }
N
i=1

are known and have dynamics

in the form of (1). We associate each subsystem with a set

of functions { fi ,hi ,дi , li } and xi ∈ R
ni
, qi ∈ Qi , wi ∈ R

niw ,

ui ∈ Ui , yi ∈ R
niy

and pi ∈ Pi . The static interconnection is

characterized by a matrixM ∈ Rnw ×Rny where n =
∑N

i=1
ni ,

nw =
∑N

i=1
niw and ny =

∑N
i=1

niy . That is,M satisfies


w
z
u
ζ

 = M


y
d
p
µ

 , (8)

where d ∈ Rnd and z ∈ Rnz are the continuous exogenous
inputs and outputs, respectively. Similarly, µ ∈ M ⊂ Znµ

and µ ∈ Z ⊂ Znζ are the discrete exogenous inputs and

outputs, respectively. We assume this interconnection is well-

posed, i.e., for all d ∈ L2e and initial condition x(0) ∈ Rn ,
there exist unique z,w,y ∈ L2e that causally depend on d for

all p ∈ P . Furthermore, we define

M =

[
Mc

Md

]
,

whereMc ∈ Rnw+ny × Rnw+ny andMd ∈ Znµ+nζ × Znµ+nζ .
The continuous local and global supply rates,W i

c (wi ,yi )
andWc (d, z), respectively, are defined by quadratic functions.
That is,

Wc (d, z) =

[
d
z

]T
S

[
d
z

]
. (9)

Analogously, for discrete subsystems, we haveW i
d (pi ,ui ) and

Wd (p,u) given by quadratic functions

Wd (p,u) =

[
u
p

]T
R

[
u
p

]
. (10)

We next show that certifying the dissipativity of an over-

all interconnected system can be concluded if each of the

subsystems satisfy the local dissipativity property. Let

Li =

{
(Si , Ri ) |

Gi is dissipative w.r.t.

[
wi
yi

]T
Si

[
wi
yi

]
, and

[
ui
pi

]T
Ri

[
ui
pi

] }
,

(11)

Lc =

{
S, {Si }

N
i=1

|

[
Mc
1ny

]T
PTc QcPc

[
Mc
1ny

]
< 0

}
, (12)

and

Ld =

{
R, {Ri }

N
i=1

|

[
Md
1np

]T
PTd QdPd

[
Md
1np

]
< 0

}
, (13)
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whereinQc = diaд(S1, . . . , SN ,−S),Qd = diaд(R1, . . . ,RN ,−R),
and Pc and Pd are permutation matrices defined by

w1

y1

...
wN
yN
d
z


= Pc


w
z
y
d

 , and


u1

p1

...
uN
pN
µ
ζ


= Pd


u
ζ
p
µ

 . (14)

Proposition 1. Consider the interconnection of N subsys-
tems as given in (8) with the global supply rates (9) and (10).
If there exists {Si }Ni=1

and {Ri }
N
i=1

satisfying

(Si ,Ri ) ∈ Li , i = 1, . . . ,N , (15)

and
(S1, . . . , SN ,−S) ∈ Lc , (16)

(R1, . . . ,RN ,−R) ∈ Ld , (17)

then the interconnected system is dissipative with respect to the
global supply ratesWd andWc . A storage function certifying
global dissipativity isV (x ,q) =

∑N
i=1

Vi (xi ,qi ), whereVi is the
storage function certifying dissipativity of subsystem i as in
Li .

Proof. See Appendix B. □

Proposition 1 provides the means to decompose the analy-

sis of interconnected subsystems to smaller problems that are

computationally more amenable. However, even the above

discussed decompositional analysis method can be computa-

tionally involved for large-scale hybrid systems. In the fol-

lowing, we propose a method based on accelerated ADMM

to carry out such computations in a distributed manner.

4 COMPUTATIONAL FORMULATION
USING ACCELERATED ADMM

For small-scale systems, we can solve the optimization prob-

lem outlined in Proposition 1 using publicly available SDP

solvers like MOSEK [4], SeDuMi [33] or SDPT3 [39]. But,

these SDP solvers do not scale well for larger problems, as

they use interior point methods, which requires solving a

system of equations in each iteration. However, the struc-

ture in our problem allows us to decompose the constraints

in (5), (6) and (7), which allows us a distributed algorithm.

Specifially, ADMM [10] allows us to decompose convex opti-

mization problems into a set of smaller problems. A generic

convex optimization problem

minimize f (l)

subject to l ∈ C, (18)

where l ∈ Rn , f is a convex function, and C is a convex set,

can be written in ADMM form as

minimize f (l) + д(v)

subject to l = v, (19)

where д is the indicator function of C.
The problem we want to find a compositional formulation,

which is outlined in Proposition 1 is

minimize

{Si }Ni=1
, {Ri }Ni=1

, {Vi }Ni=1

η

subject to (5),(6),(7), (16), and (17) (20)

For example, η can be the induced norm of

∥z ∥L2

∥d ∥L2

or

∥ζ ∥l2
∥µ ∥l2

we want to minimize. Using the above form, the problem in

(20) can be written in ADMM form with f (l) is defined as

sum of η and the indicator function of (5),(6) and (7), andд(v)
is defined as the indicator function of (16) and (17). Then,

the scaled form of ADMM algorithm for problem in (19) is

lk+1 = arg min

li
f (l) + (ρ/2)| |l −vk + zk | |2

2
,

vk+1 = arg min

v
д(v) + (ρ/2)| |lk+1 −v + zk | |2

2
,

zk+1 = uk + lk+1 −vk+1,

where l andv are the vectorized form of the matrices {Si }
N
i=1

,

{Vi }
N
i=1

, {Ri }
N
i=1

, z is the scaled dual variable and ρ > 0 is the

penalty parameter. Since f (l) is separable for each subsystem,

the ADMM algorithm can be parallelized as follows:

lk+1

i = arg min

li
fi (l) + (ρ/2)| |li −vki + z

k
i | |

2

2
,

vk+1 = arg min

v
д(v) + (ρ/2)| |lk+1 −v + zk | |2

2
,

zk+1 = zk + lk+1 −vk+1,

Under mild assumptions, the ADMM algorithm converges

[10], but the convergence is only asymptotic in general, there-

fore it may require many iterations to achieve sufficient ac-

curacy.

4.1 Accelerated ADMM
Seceral algorithms in [7, 8, 11, 14, 26] shows that acceler-

ation schemes can improve the performance significantly.

These methods achieveO( 1

k2
) convergence after k iterations,

which is shown to be optimal for a first order method [24].

However, they usually require the function f (l) to be dif-

ferentiable with a known Lipschitz constant on the ∇f (l),
which does not exist when the problem is constrained. For

the case when f (l) or д(v) is not strongly convex or smooth,

smoothing approaches have been used [9, 25] to improve

convergence. However, to the best of our knowledge, these
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methods have not been applied in compositional analysis for

hybrid systems.

Consider the following perturbation of the problem in (20)

minimize

{Si }Ni=1
, {Ri }Ni=1

, {Vi }Ni=1

η + µ di (Si ,Ri ,Vi , )

subject to (5),(6),(7), (16), and (17) (21)

for some fixed smoothing parameter µ > 0 and a strongly

convex function d that satisfies

d(l) ≥ d(l0) +
1

2

| |l − l0 | |
2

2
(22)

for some point l0 ∈ Rn . Specifically, we choose di = ∥Si ∥F +
∥Vi ∥F + ∥Ri ∥F , where ∥ · ∥F is the Frobenius norm. For some

problems, it is shown that for small enough µ, the approxi-
mate problem (21) is equivalent to the original problem [9].

When f (l) and д(v) are strongly convex, the ADMM algo-

rithm can be modified with an acceleration step to achieve

O( 1

k2
) convergence after k iterations [12]. Then, the acceler-

ated ADMM algorithm is

lki = arg min

li
fi (l) + (ρ/2)| |li − v̄ki + z̄

k
i | |

2

2
,

vk = arg min

v
д(v) + (ρ/2)| |lk −v + z̄k | |2

2
,

zk = z̄k + lk −vk ,

αk+1 =
1 +

√
1 + 4α2

k

2

v̄k+1 = vk +
αk − 1

αk+1

(vk −vk−1)

z̄k+1 = zk +
αk − 1

αk+1

(zk − zk−1),

where ρ is a positive constant that satisfies ρ ≤ µ, and α1 = 1.

Note that l update can be carried out in parallel while

achieving O( 1

k2
) convergence, which cannot be achieved by

the standard ADMMor accelerated proximalmethods if there

are constraints in the problem.

In general, we do not have access to the Lipschitz con-

stant or strongly convexity parameter in the feasible region

of the subproblems because of the constraints, which may

reduce the performance of the accelerated method [9]. One

approach to deal with the case of unknown Lipschitz con-

stant or strongly convexity parameter is so-called restart
method, which is used in [9, 26], and it is shown that restart

methods can improve the convergence rate significantly. To

apply the method, we restart the algorithm, i.e, we set the

acceleration parameter αk = 1 after a certain number of

iterations while using the point in iteration k as the starting

point for the restart, which resets the acceleration parame-

ter, and reruns the accelerated ADMM algorithm from the

q1 q2

u = 1

u = 0

u = 1

u = 0

Figure 2: Di in the Example I.

next starting point. Examples in [9] show that the restarting

methods can greatly improve performance, but they note

that the restart method requires tuning for different prob-

lems to optimize the performance, i.e, the performance can

vary significantly with different restart schemes.

5 NUMERICAL EXPERIMENTS
In this section, we illustrate the proposed distributed analysis

method with two examples, where we compare the conver-

gence rate of ADMM with accelerated ADMM and several

restart methods. We implemented both standard ADMM and

accelerated ADMM algorithms in MATLAB using the CVX

toolbox [13] and MOSEK [4] to solve SDP problems.

5.1 Example I
We illustrate our approach in the following example with

the subsystems Gi with i = 1, 2:

G0 :



f (x1,

(
w2

w3

)
; 0) =

[
−4 3

2 −6

]
x1 + I2

[
w2 + d

w3

]
,

h(x1; 0) = w1 = 0.5
[
1 1

]
x1,

f (x1,

(
w2

w3

)
; 1) =

[
−5 4

1 −4

]
x1 + I2

[
w2 + d

w3

]
,

h(x1; 1) = w1 = 0.5
[
1 1

]
x1,

G1 :



f (x2,w1; 0) =

[
−7 1

2 −3

]
x2 +

[
1

1

]
w1,

h(x2; 0) =

[
w2

w3

]
= 0.5I2x2,

f (x2,w1; 1) = Ûx2 =

[
−5 2

3 −3

]
x2 +

[
1

1

]
w1,

h(x2; 1) =

[
w2

w3

]
= 0.5I2x2,

andDi is shown in Figure 2 with two states q1 and q2, inputs
U = {0, 1} and outputs P = {0, 1}. The output function p
is defined as p(qj ,u) : u.
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Figure 3: Norm of primal residual versus number of
iterations for the decentralized analysis problemwith
standard and accelerated ADMM with various restart
methods.

We apply the compositional approach underlined by the

problem in (21) to synthesize a controller to minimize the

H∞-norm between the output y = w3 and input d .
Since the continuous dynamics are linear, we consider

quadratic Lyapunov functions for subsystems. For each i =
1, 2, let

V (xi ) =

(
x
q

)T [
Pi ri
rTi λi

] (
x
q

)
.

The iterative methods were initialized using V 0

i = S0

i =

R0

i = U
0

i = I . For each method, we plot the norm of primal
residual in Figure 3, which is defined as rk = lk −vk , and it

is the residual for primal feasibility. Also, we show the norm

of the dual residual sk = ρ(vk −vk−1) in Figure 4, which can

be viewed as a residual for the dual feasibility condition.

The accelerated ADMM achieves superior convergence

in primal and dual residuals compared to ADMM. However,

restarting the algorithm in every 10 or 20 iterations makes

the convergence of the primal residual and dual residual

significantly faster than accelerated ADMM without restart.

In this example, restarting in every 5 iterations does not

improve the convergence significantly, however all of the

accelerated methods outperforms ADMM. After 100 itera-

tions with the accelerated ADMM, the minimum H∞-norm

between the outputy and inputd is 0.1411 with the following
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Acc ADMM, restart every 5

Acc ADMM, restart every 10
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Figure 4: Norm of dual residual versus number of it-
erations for the decentralized analysis problem with
standard and accelerated ADMM with various restart
methods.

local Lyapunov functions:

P1 =


0.0912 0.0500 0

0.0500 0.1556 0

0 0 7.9 · 10
−5

 ,
P2 =


0.0029 0.0010 0

0.0010 0.0007 0

0 0 6.8 · 10
−5

 .
5.2 Example II
We consider a modified version of the example in [40] as

illustrated in Fig 5. For i = 1, 2, 3, the subsystems Gi are

characterized as follows:

G1 :



f (x1,

(
w2

w4

)
; 0) =

[
−1 0

2 −2

]
x1 + I2

[
w2

w4

]
,

h(x1; 0) = w1 = 0.5
[
1 1

]
x1,

f (x1,

(
w2

w4

)
; 1) =

[
−2 0

2 −3

]
x1 + I2

[
w2

w4

]
,

h(x1; 1) = w1 = 0.5
[
1 1

]
x1,

f (x1,

(
w2

w4

)
; 2) =

[
−4 0

2 −4

]
x1 + I2

[
w2

w4

]
,

h(x1; 2) = w1 = 0.5
[
1 1

]
x1,
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Figure 5: The interconnected system in Example II.

G2 :



f (x2,w1; 0) =

[
−8 0

12 −2

]
x2 +

[
1

1

]
w1,

h(x2; 0) =

[
w2

w3

]
= 0.5I2x2,

f (x2,w1; 1) =

[
−7 1

2 −3

]
x2 +

[
1

1

]
w1,

h(x2; 1) =

[
w2

w3

]
= 0.5I2x2,

f (x2,w1; 2) =

[
−7 0

6 −3

]
x2 +

[
1

1

]
(w1 + d),

h(x2; 2) =

[
w2

w3

]
= 0.5I2x2,

G3 :



f (x3,w3; 0) =

[
−1 0

2 −2

]
x3 +

[
1

1

]
w3,

h(x3; 0) = w4 = 0.4
[
1 1

]
x3,

f (x3,w3; 1) =

[
−2 0

2 −3

]
x3 +

[
1

1

]
w3,

h(x3; 1) = w4 = 0.4
[
1 1

]
x3,

f (x3,w3; 2) =

[
−3 0

2 −4

]
x3 +

[
1

1

]
w3,

h(x3; 2) = w4 = 0.4
[
1 1

]
x3

and Di is shown in Figure 6 with three states q1,q2, and q3,

inputs U = {0, 1} and outputs P = {0, 1, 2}. The output
function p is defined as

p(qi ,u) :

{
u, for i ∈ {1, 2}

2, for i = 3.

We initialize the methods using V 0

i = S0

i = R0

i = U 0

i = I
like in Example 1. Similarly in Example I, accelerated ADMM

q3

q1

q2

u = 0, 1

u = 0

u = 1

u = 0

u = 1

Figure 6: Di in the Example II.
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Figure 7: Norm of primal residual versus number of
iterations for the decentralized analysis problemwith
standard and accelerated ADMM with various restart
methods.

achieves superior convergence in primal residual and dual

residual compared to ADMM, which can be seen in Figures 7

and 8. Also, restarting the method at every 20 iteration im-

proves the primal and dual convergence significantly, how-

ever restarting at every 5 or 10 iterations does improve the

convergence of residuals significantly over the accelerated

ADMM, which shows that different restarting methods can

perform differently in various problems. However, all of the

accelerated methods outperform ADMM. After 100 itera-

tions with accelerated ADMM, the minimum induced-norm

between the output from input u to p is η = 1 with the

following local storage functions:

P1 =


0.0815 0.0192 0

0.0192 0.0078 0

0 0 1.7 · 10
−4

 ,
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Figure 8: Norm of dual residual versus number of it-
erations for the decentralized analysis problem with
standard and accelerated ADMM with various restart
methods.

P2 =


0.1142 0.0685 0

0.0685 0.0489 0

0 0 1.7 · 10
−4

 ,

P3 =


0.4546 0.1119 0

0.1119 0.0458 0

0 0 2.1 · 10
−4

 .
We also consider finding the minimal H∞-norm between

the outputy = w3 inputd . For eachmethod that we discussed,

we plot the norm of primal residual in Figure 9, and the norm

of the dual residual in Figure 10.

Similar to the previous examples, accelerated ADMM

achieves superior convergence in residuals compared to

ADMM and restarting the method at every 20 iteration im-

proves the primal and dual convergence significantly. Other

restart methods and the accelerated ADMM also outperforms

the regular ADMM, but restarting at every 20 iteration gives

the fastest rate of convergence in both cases. After 100 itera-

tions with the accelerated ADMM, the value of the minimum

norm between the output y = w3 input d is η = 0.2049 with

the following local storage functions:
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Figure 9: Norm of primal residual versus number of
iterations for the decentralized analysis problemwith
standard and accelerated ADMM with various restart
methods.
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Figure 10: Norm of dual residual versus number of it-
erations for the decentralized analysis problem with
standard and accelerated ADMM with various restart
methods.

P1 =


0.1568 0.0366 0

0.0366 0.0147 0

0 0 1.6 · 10
−4

 ,
P2 =


0.2166 0.1297 0

0.1297 0.0925 0

0 0 1.7 · 10
−4

 ,
P3 =


0.0380 0.0099 0

0.0099 0.0042 0

0 0 6.2 · 10
−5

 .
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6 CONCLUSIONS AND FUTUREWORK
We propose a method for compositional analysis of large

scale hybrid systems, for which an underlying interconnec-

tion topology is given. For such systems, we decompose the

global analysis problem into a number of smaller local anal-

ysis problems using dissipativity theory. Furthermore, we

proposed a distributed optimization method with smoothing

techniques, which enables to employ accelerated ADMM.

Numerical results show that the accelerated ADMM method

with different restart methods significantly improves the

convergence rate compared to standard ADMM.

In the examples studied in this paper, we considered lin-

ear continuous dynamics. The generalization to polynomial

continuous dynamics can be formulated based on sum-of-

squares optimization [28]. Moreover, one interesting analysis

problem to future research is compositional safety verifica-

tion. In this respect, in [32], a method is brought forward

based on compositional barrier certificates for continuous

systems and the dual decomposition method was used for

implementation. Finally, distributed synthesis of control laws

for large-scale hybrid systems can be studied using the dissi-

pativity framework presented in this study.

A PROOF OF THEOREM 1
Inequality (2) implies thatV is positive definite andV (0,q) =
0, ∀q ∈ Q. We define the time intervals Tk = (tk , tk+1)

where the continuous dynamics follows C in (1) with p ∈ P .

Similarly, t+k corresponds to the discrete jump instant at tk .
By continuity, we can re-write (3) as(
∂V (x ,q)

∂x

)T
f (x , 0;p) ≤ −ρp , ∀x ∈ Rn , ∀q ∈ Q, ∀p ∈ P,

(23)

where ρp , p ∈ P , is a small positive number. Moreover,

differentiatingV with respect to time and integrating it from

t0 to tn and noting that the discrete jumps happen on sets of

measure zero, yields∫ tn

t0

dV

dt
dt =

n−1∑
k=0

∫ tk+1

tk

(
∂V (x ,q)

∂x

)T
f (x , 0;pk ) dt

+

n−1∑
k=0

(
V

(
x(tk+1),q

+(tk+1)
)
−V

(
x(tk+1),q(tk+1)

) )
. (24)

From (4), we infer

n−1∑
k=0

(
V

(
x(tk+1),q

+(tk+1)
)
−V

(
x(tk+1),q(tk+1)

) )
≤ 0,

since it is the finite sum of non-negative terms. Hence,∫ tn

t0

dV

dt
dt ≤

n−1∑
k=0

∫ tk+1

tk

(
∂V (x ,q)

∂x

)T
f (x , 0;pk ) dt

Using (23), the right-hand side of above inequality satisfies

n−1∑
k=0

∫ tk+1

tk

(
∂V (x ,q)

∂x

)T
f (x , 0;pk ) dt

≤ −

∫ tn

t0

ρ dt = −ρ(tn − t0), (25)

where ρ = minp∈P ρp . That is,∫ tn

t0

dV

dt
dt = V (x(tn),q(tn)) −V (x0,q0) ≤ −ρ(tn − t0)

Re-organizing the terms gives

V (x(tn),q(tn)) ≤ V (x0,q0) + ρt0 − ρtn .

From (2), we know that V (x(tn),q(tn)) > 0; therefore, there

exists a t ≥
ρ0+V (x0,q0)

ρ such that V (x(t),q(t)) = 0. Addition-

ally, since (4) holds, we haveV (x ,q+(t)) ≤ V (x ,q(t))x . Thus,
x(t) = 0 for all q ∈ Q.

B PROOF OF PROPOSITION 1

Multiplying the inequality in (12) from left by

[
y
d

]T
and right

by

[
y
d

]
, we obtain

N∑
i=1

[
wi
yi

]T
Si

[
wi
yi

]
−

[
d
z

]T
S

[
d
z

]
≤ 0. (26)

Similarly, multiplying the inequality in (13) from left by

[
p
µ

]T
and right by

[
p
µ

]
gives

N∑
i=1

[
ui
pi

]T
Ri

[
ui
pi

]
−

[
µ
ζ

]T
R

[
µ
ζ

]
≤ 0. (27)

Moreover, because (Si ,Ri ) ∈ Li , the exists storage functions

Vi (x ,q), i = 1, 2, . . . ,N such that(
∂Vi (xi ,qi )

∂xi

)T
fi (xi ,wi ;pi ) −

[
wi
yi

]T
Si

[
wi
yi

]
≤ 0,

and

V (xi ,q
+
i ) −V (xi ,qi ) −

[
ui
pi

]T
Ri

[
ui
pi

]
≤ 0.

If we sum over i = 1 to N the above dissipation inequalities

and use (26) and (27), we infer

N∑
i=1

(
∂Vi (xi ,qi )

∂xi

)T
fi (xi ,wi ;pi ) ≤

[
d
z

]T
S

[
d
z

]
,

and

N∑
i=1

(
V (xi ,q

+
i ) −V (xi ,qi )

)
≤

[
µ
ζ

]T
R

[
µ
ζ

]
,
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which implies that the overall system is dissipative with the

storage function V (x ,q) =
∑N

i=1
Vi (xi ,qi ).
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