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Abstract— Privacy is an increasing concern in cyber-physical
systems that operates over a shared network. In this pa-
per, we propose a method for privacy verification of cyber-
physical systems modeled by Markov decision processes (MDPs)
and partially-observable Markov decision processes (POMDPs)
based on barrier certificates. To this end, we consider an
opacity-based notion of privacy, which is characterized by
the beliefs in system states. We show that the belief update
equations can be represented as discrete-time switched systems,
for which we propose a set of conditions for privacy verification
in terms of barrier certificates. We further demonstrate that, for
MDPs and for POMDPs, privacy verification can be computa-
tionally implemented by solving a set of semi-definite programs
and sum-of-squares programs, respectively. The method is
illustrated by an application to privacy verification of an
inventory management system.

I. INTRODUCTION

Privacy is becoming a rising concern in many modern
engineering systems which are increasingly connected over
shared infrastructures, such as power grids [1], healthcare
systems [2], smart home [3], transportation systems [4], and
etc. Potentially malicious intruders may have access to the in-
formation available publicly or privately based on which they
attempt to infer some “secret” associated with the system,
such as personal activity preferences, health conditions, and
bank account details. If the privacy is compromised, it could
lead to substantial social or economic loss. Therefore, it is
of fundamental importance to design cyber-physical systems
that are provably safe against privacy breaches.

In recent years, a privacy notion called “opacity” has
received significant attention. Generally speaking, opacity
is a confidentiality property that characterizes a system’s
capability to conceal its “secret” information from being
inferred by outside observers. These observers are assumed
to have full knowledge of the system model, often as a
finite automaton, and can observe or partially observe the
behaviors of the system, such as the actions performed, but
not the states of the system directly. Various notions of
opacity, depending on whether the secret is the behavior of
the system in regular languages, initial states, or the current
states, have been proposed [5] and their verification and
enforcement are studied in deterministic and probabilistic
systems [6].
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Most existing results on opacity only consider the absolute
certainty of the occurrence of the secret as the privacy vio-
lation. However, in practice, in many (partially observable)
probabilistic systems, the intruder may only maintain a belief
over the system secrets through Bayesian inference, which
may still pose a security threat if the intruder has a high
confidence that a secret has been observed. Hence, a new
opacity notion was introduced in [7] for Markov decision
processes (MDPs), where the system is considered opaque,
if the intruder’s confidence that the current state is a secret
state never exceeds a given threshold.

In this paper, in addition to studying privacy verification
in MDPs, we study partially observable MDP (POMDP)
models with the privacy metric based on opacity. POMDPs
generalize MDPs with partial observability and are popu-
lar in sequential decision-making [8]. Existing studies on
POMDPs mostly consider model checking against a given
specification [9], or policy synthesis to optimize a given
performance metric [10]. Privacy issues in POMDP planning
have gained interest only recently. For example, in [11],
privacy is quantified as the average conditional entropy to
be minimized while optimizing the task-related reward in a
power grid. An accumulated discounted minimal Bayesian
risk was defined in [12] as the privacy breach metric to be
optimized. Like these two papers, most existing work focuses
on privacy measures that are averaged over time. However,
minimizing a time average may not be sufficient in some
circumstances, because it does not guarantee that the intruder
will not have a fairly high confidence about the secret at some
time instant. In contrast, our notion of privacy is supposed
to be satisfied at any time.

A key observation we use in [7] is that the intruder’s belief
update dynamics can be characterized as an autonomous
discrete-time switched system whose switching signals are
the observed actions. Then, the privacy verification problem
can be equivalently cast into verifying whether the solutions
of the belief switched system avoid a privacy unsafe subset of
the belief space, where the privacy specification is violated.

Safety verification is a familiar subject to the control
community [13], [14], [15], [16], [17]. One of the methods
for safety verification relies on the construction of a function
of the states, called the barrier certificate that satisfies a
Lyapunov-like inequality [15]. The barrier certificates have
shown to be useful in several system analysis and control
problems running the gamut of bounding moment functional
of stochastic systems [18] to collision avoidance of multi-
robot systems [19]. It was also shown in [20] that any safe
dynamical system admits a barrier certificate.

In this paper, we propose conditions for privacy veri-



fication of MDPs and POMDPs using barrier certificates.
From a computational stand point, we formulate a set of
semi-definite programs (SDPs) and sum-of-squares programs
(SOSP) to verify the privacy requirement of MDPs and
POMDPs, respectively. We apply the proposed method to
a case study of privacy verification of an inventory manage-
ment system.

The rest of this paper is organized as follows. In the
subsequent section, we present some definitions related to
MDPs, POMDPs, belief dynamics and privacy. In Section III,
we propose a set of conditions for privacy verification
of belief equations represented as discrete-time switched
systems based on barrier certificates. In Section IV, we
apply the method based on barrier certificates to the privacy
verification problem of MDPs and POMDPs, and present
a set of SDP and SOSP sufficient conditions, respectively.
In Section V, we elucidate the proposed privacy verifica-
tion methodology with an inventory management example.
Finally, in Section VI, we conclude the paper and give
directions for future research.

Notation: The notations employed in this paper are rela-
tively straightforward. R≥0 denotes the set [0,∞) and Z≥0
denotes the set of integers {0, 1, 2, . . .}. For a finite set A,
we denote by |A| the cardinality of the set A. Given a matrix
Q, we denote by QT the transpose of Q. The notation 0n×m
is the n×m matrix with zero entries. For two vectors, a and
b with the same size, a � b implies entry-wise inequality.
R[x] accounts for the set of polynomial functions with real
coefficients in x ∈ Rn, p : Rn → R and Σ ⊂ R is the subset
of polynomials with an SOS decomposition; i.e., p ∈ Σ[x]
if and only if there are pi ∈ R[x], i ∈ {1, . . . , k} such that
p = p2i + · · ·+ p2k.

II. PRELIMINARIES

A. MDP

MDPs [21] are decision-making modeling framework in
which the actions have stochastic outcomes. An MDP M =
(Q, π,A, T ) has the following components:
• Q is a finite set of states with indices {1, 2, . . . , n}.
• π : Q → [0, 1] defines the distribution of the initial

states, i.e., π(q) denotes the probability of starting at
q ∈ Q.

• A is a finite set of actions.
• T : Q × A × Q → [0, 1] is the probabilistic transition

function where

T (q, a, q′) := P (qt = q′|qt−1 = q, at−1 = a),

∀t ∈ Z≥1, q, q′ ∈ Q, a ∈ A.

B. POMDP

POMDPs provide a more general mathematical framework
to consider not only the stochastic outcomes of actions,
but also the imperfect state observations [22]. Formally,
a POMDP P = (Q, π,A, T, Z,O) is defined with the
following components:
• Q, π,A, T are the same as the definition of an MDP.

• Z is the set of all possible observations. Usually z ∈
Z is an incomplete projection of the world state q,
contaminated by sensor noise.

• O : Q × A × Z → [0, 1] is the observation function
where

O(q, a, z) := P (zt = z|qt = q, at−1 = a),

∀t ∈ Z≥1, q ∈ Q, a ∈ A, z ∈ Z.

Furthermore, we assume that there is a set of secret states
Qs ⊂ Q and we would like to conceal the information that
the system is currently in some secret state q ∈ Qs.

C. Belief Update Equations as Discrete-Time Switched Sys-
tems

In [7], we considered the case that given a system modeled
as an MDPM, there is an intruder with potentially malicious
intention that can observe the actions executed but not the
states of the system, and tries to determine whether the sys-
tem is currently in some secret state with a high confidence.
If all the actions are available at every state, then from the
intruder’s point of view, the system is actually a POMDP
with trivially the same observation for every state (since it
cannot observe the states at all). In this case, the intruder may
maintain a belief bt−1 : Q→ [0, 1],

∑
q∈Q bt(q) = 1 over Q

at time t− 1. The belief at t = 0 is defined as b0(q) = π(q)
and bt(q) denotes the probability of system being in state q
at time t. At time t+ 1, when action a ∈ A is observed, the
belief update can be described as

bt(q
′) =

∑
q∈Q

P (q, a, q′)bt−1(q). (1)

We also consider systems modeled as a POMDP, where we
assume that the intruder may have access to the observations
in addition to the executed actions. Therefore, the intruder
has to consider a complete history of the past actions and
observations to update its belief with Bayes rule:

bt(q
′) = P (q′|zt, at−1, bt−1)

=
P (zt|q′, at−1, bt−1)P (q′|at−1, bt−1)

P (zt|at−1, bt−1)

=
P (zt|q′, at−1, bt−1)

∑
q∈Q P (q′|at−1, bt−1, q)P (q|at−1, bt−1)

P (zt|at−1, bt−1)

=
O(q′, at−1, zt)

∑
q∈Q T (q, at−1, q

′)bt−1(q)∑
q′∈Q O(q′, at−1, zt)

∑
q∈Q T (q, at−1, q′)bt−1(q)

.

(2)

D. Privacy in Belief Space
Our notion of privacy is defined on the belief space of the

intruder, where we require that the intruder, even with access
to the actions and observations since t = 0, is never confident
that the system is in a secret state with a probability larger
than or equal to a constant λ ∈ [0, 1], at any time t:∑

q∈Qs

bt(q) ≤ λ, ∀t. (3)

The notion of privacy used in this paper is closely related
to the current-state opacity (CSO) in discrete event sys-
tems [6]. The CSO definition provides a deterministic notion



of privacy in that privacy is breached when the intruder
is absolutely sure that the system is currently in a secret
state. On the other hand, in our formulation, the privacy
requirement is violated when the intruder is confident with
a probability over some threshold.

III. PRIVACY VERIFICATION USING
BARRIER CERTIFICATES

The belief update equations for MDPs (1) and
POMDPs (2) are discrete-time switched system where the
actions a ∈ A define the switching modes. In the sequel,
we develop a technique based on barrier certificates for
privacy verification of belief update equations represented
as discrete-time switched systems.

Consider the following belief dynamics

bt = fa(bt−1), (4)

where b denote the belief vector belonging to the belief
space hyper-cube [0, 1]|Q|, a ∈ A is the action that can be
interpreted as the switching mode index, t ∈ Z≥1 denote the
discrete time instances, the vector fields {fa}a∈A with fa :
[0, 1]|Q| → [0, 1]|Q|, and b0 ∈ B0 ⊂ [0, 1]|Q| representing
the set of initial beliefs. We also define a privacy unsafe set
Bu ⊂ [0, 1]|Q|, where the privacy requirement is violated.
Verifying whether all the belief evolutions of (4) starting at
B0 avoid a given privacy unsafe set Bu at a pre-specified
time T or for all time is a cumbersome task in general and
requires simulating (4) for all elements of the set B0 and
for different sequences of a ∈ A. Furthermore, POMDPs
are often computationally intractable to solve exactly [23].
To surmount these challenges, we demonstrate that we can
find a barrier certificate which verifies that a given privacy
requirement is not violated without the need to solve the
belief update equations or the POMDPs directly.

Theorem 1: Consider the belief update equation (4).
Given a set of initial beliefs B0 ⊂ [0, 1]|Q|, an unsafe set
Bu ⊂ [0, 1]|Q| (B0 ∩ Bu = ∅), and a constant T , if there
exists a function B : Z× [0, 1]|Q| → R such that

B(T, bT ) > 0, ∀bT ∈ Bu, (5)

B(0, b0) < 0, ∀b0 ∈ B0, (6)

and

B(t, fa(bt−1))−B(t− 1, bt−1) ≤ 0,

∀t ∈ {1, 2, . . . , T}, ∀a ∈ A, (7)

then there exist no solution of belief update equation (4) such
that b0 ∈ B0, and bT ∈ Bu for all a ∈ A.

Proof: The proof is carried out by contradiction.
Assume at time instance T there exit a solution to (4) such
that b0 ∈ B0 and bT ∈ Bu. From inequality (7), we have

B(t, bt) ≤ B(t− 1, bt−1)

for all t ∈ {1, 2, . . . , T} and all actions a ∈ A. Hence,
B(t, bt) ≤ B(0, b0) for all t ∈ {1, 2, . . . , T}. Furthermore,
inequality (6) implies that

B(0, b0) < 0

for all b0 ∈ B0. Since the choice of T can be arbitrary,
this is a contradiction because it implies that B(T, bT ) ≤
B(0, b0) < 0. Therefore, there exist no solution of (4) such
that b0 ∈ B0 and bT ∈ Bu for any sequence of actions a ∈ A.

Theorem 1 checks whether the privacy requirement is not
violated at a particular point in time T . We can generalize
this theorem to the case for verifying privacy for all time. In
this case, the barrier certificate is time-invariant.

Corollary 1: Consider the belief switched dynamics (4).
Given a set of initial conditions B0 ⊂ [0, 1]|Q|, and an unsafe
set Bu ⊂ [0, 1]|Q| (B0 ∩ Bu = ∅), if there exists a function
B : [0, 1]|Q| → R such that

B(b) > 0, ∀b ∈ Bu, (8)

B(b) < 0, ∀b ∈ B0, (9)

and
B (fa(bt−1))−B(bt−1) ≤ 0, (10)

then there exist no solution of (4) such that b0 ∈ X0 and
bt ∈ Xu for all t ∈ Z≥1 and any sequence of actions a ∈ A.
Hence, the privacy requirement is not violated.

IV. PRIVACY VERIFICATION IN MDPS AND POMDPS

In the previous section, we discussed conditions for pri-
vacy verification of general belief update equations using
barrier certificates. Next, we show that the barrier certificates
can be used for privacy verification of MDPs and POMDPs.
To this end, we define the privacy unsafe set Bu to be the
complement of the privacy requirement (3) inspired by the
notion of opacity. That is,

Bu =

b ∈ R|Q| |
∑
q∈Qs

bt(q) > λ

 . (11)

Hence, given a set of initial beliefs B0, if there exists a barrier
certificate verifying privacy with respect to Bu, then we infer
that the privacy requirement is satisfied, i.e.,∑
q∈Qs

bt(q) ≤ λ.
In the following, we formulate a set of conditions in terms

of SDPs or SOSPs (refer to Appendix A for more details
on SOSPs) to verify whether a given MDP or a POMDP,
respectively, satisfies a privacy requirement.

A. Privacy Verification for MDPs via SDPs

For MDPs, the belief update equation can be described as
a linear discrete-time switched system

bt+1(q′) = Ha bt(q
′) =

∑
q∈Q

P (q, a, q′)bt(q), (12)

where Ha ∈ R|Q|×|Q|, a ∈ A. Furthermore, the privacy
requirement (11) describes a half-space in the belief space
hyper-cube. Denote by b̄ the augmentation of the belief states
by 1, i.e., b̄ =

[
bT 1

]T ∈ R|Q|+1. We define the set of
initial beliefs to be a convex polytope represented by the



intersection of a set of half-spaces in the augmented belief
space

B0 =
{
b0 ∈ R|Q| | ĒT0 b̄0 � 0n0

}
, (13)

where Ē0 ∈ Rn0×(|Q|+1).
The privacy unsafe set can be re-written, respectively, as

Bu =
{
b ∈ R|Qs| | b̄T W̄ b̄ > 0

}
, (14)

where
W̄ =

[
0|Q|×|Q| 01×1
wT −λ

]
,

with w ∈ R|Q| and w(i) = 1 for i = q ∈ Qs and w(i) = 0
otherwise.

At this point, we are ready to state the SDP conditions for
verifying privacy of a given MDP.

Corollary 2: Consider the MDP belief update dynamics
as given in (12), the unsafe set (14), and the set of initial
beliefs (13). If there exist a matrix V ∈ S|Q|+1, a matrix
with positive entries U ∈ Sn0 , and a positive constant su

such that
V − suW̄ > 0, (15)

−V − Ē0UĒ
T
0 > 0, (16)

and
HT
a V Ha − V < 0, ∀a ∈ A, (17)

then the privacy requirement (3) is satisfied for all time.
Proof: We show that each of the SDP conditions of

(15)-(17) correspond to conditions (8)-(10), respectively, for
the barrier certificate

B(b̄) = b̄T (q) V b̄(q).

Multiplying both sides of (15) from left and right respectively
with b̄T (q) and b̄(q), respectively, gives

b̄T (q)V b̄(q)− sub̄T (q)W̄ b̄(q) > 0.

Since su > 0, from S-procedure, we conclude that
b̄T (q)V b̄(q) > 0 only if b̄T (q)W̄ b̄(q) > 0 (because
b̄TV b̄(q) > sub̄T (q)W̄ b̄(q)). Moreover, b̄T (q)W̄ b̄(q) > 0
implies that

∑
q∈Qs

bt(q) > λ. Therefore, condition (8) is
satisfied. Similarly, we can show, via S-procedure [24], that
if the linear matrix inequality (16) is satisfied, condition (9)
holds. This is due to the fact that the polytope B0 is contained
in the ellipsoid represented by b̄T Ē0UĒ

T
0 b̄ > 0 and the

positive entries of U are the S-procedure coefficients based
on the construction in [25, p. 76].

Finally, multiplying both sides of (17) from left and right
respectively with b̄T (q) and b̄(q) yields

b̄T (q)
(
HT
a V Ha − V

)
b̄(q) < 0, ∀a ∈ A.

That is,

b̄T (q)HT
a V Hab̄(q)− b̄T (q)V b̄(q) < 0, ∀a ∈ A,

which in turn implies that (10) holds for B(b̄) =
b̄T (q) V b̄(q). Therefore, from Corollary 1, the solutions of
the MDP belief update equation (12) are safe with respect to

the privacy unsafe set (14). Hence, the privacy requirement
is satisfied.

B. Privacy Verification for POMDPs via SOSP

The belief update equation (2) for a POMDP is a rational
function in the belief states bt(q), q ∈ Qs

bt(q
′) =

Sa (bt−1(q′))

Ra (bt−1(q′))

=
O(q′, at−1, zt)

∑
q∈Q T (q, at−1, q

′)bt−1(q)∑
q′∈QO(q′, at−1, zt)

∑
q∈Q T (q, at−1, q′)bt−1(q)

(18)

Moreover, the privacy unsafe set (11) is a semi-algebraic
set, since it can be described by a polynomial inequality. We
further assume the set of initial beliefs is also given by a
semi-algebraic set

B0 =

{
b0 ∈ R|Qs| | l0i (b0) ≤ 0, i = 1, 2, . . . , n0

}
. (19)

At this stage, we are ready to present conditions based on
SOSP to verify privacy of a given POMDP.

Corollary 3: Consider the POMDP belief update dynam-
ics (18), the privacy unsafe set (11), the set of initial beliefs
(19), and a constant T > 0. If there exist polynomial
functions B ∈ R[t, b] with degree d, pu ∈ Σ[b], p0i ∈ Σ[b],
i = 1, 2, . . . , n0, and constants s1, s2 > 0 such that

B (T, bT )−pu(bT )

∑
q∈Qs

bT (q)− λ

−s1 ∈ Σ [bT ] , (20)

−B (0, b0) +

n0∑
i=1

p0i (b0)l0i (b0)− s2 ∈ Σ [b0] , (21)

and

−Ra (bt−1)
d

(
B

(
t,
Sa (bt−1)

Ra (bt−1)

)
−B(t− 1, bt−1)

)
∈ Σ[t, bt−1], ∀t ∈ {1, 2, . . . , T}, (22)

then the privacy requirement (3) is satisfied for all t ∈
{1, 2, . . . , T}.

Proof: SOS conditions (20) and (21) are a direct
application of Propositions 1 and 2 in Appendix A to verify
conditions (5) and (6), respectively. Furthermore, condi-
tion (7) for system (18) can be re-written as

B

(
t,
Sa (bt−1)

Ra (bt−1)

)
−B(t− 1, bt−1) > 0.

Given the fact that Ra (bt−1(q′)) is a positive polynomial of
degree one, we can relax the above inequality into an SOS
condition given by

−Ra (bt−1)
d

(
B

(
t,
Sa (bt−1)

Ra (bt−1)

)
−B (t− 1, bt−1)

)
∈ Σ[t, bt−1].



Hence, if (22) holds, then (7) is satisfied as well. Then, from
Theorem 1, we infer that there is no bt(q) at time T such that
b0(q) ∈ B0 and

∑
q∈Qs

bT (q) > λ. Equivalently, the privacy
requirement is satisfied at time T . That is,

∑
q∈Qs

bT (q) ≤ λ.

We can also verify privacy for all time for a given POMDP,
which is based on Corollary 1.

Corollary 4: Consider the POMDP belief update dynam-
ics (18), the privacy unsafe set (11), and the set of initial
beliefs (19). If there is exist polynomial functions B ∈ R[b]
with degree d, pu ∈ Σ[b], p0i ∈ Σ[b], i = 1, 2, . . . , n0, and
constants s1, s2 > 0 such that

B (b)− pu(b)

∑
q∈Qs

b(q)− λ

− s1 ∈ Σ [b] , (23)

−B (b0) +

n0∑
i=1

p0i (b0)l0i (b0)− s2 ∈ Σ [b0] , (24)

and

−Ra (bt−1)
d

(
B

(
Sa (bt−1)

Ra (bt−1)

)
−B(bt−1)

)
∈ Σ[bt−1],

(25)

then the privacy requirement (3) is satisfied for all time.

V. NUMERICAL EXAMPLE:
PRIVACY IN AN INVENTORY MANAGEMENT SYSTEM

In this section, we illustrate the proposed privacy verifi-
cation method by applying it to an inventory management
system. The numerical experiments are carried out on a
MacBook Pro 2.9GHz Intel Core i5 and 8GB of RAM. The
SDPs are solved using YALMIP [26] and the SOSPs are
solved using the SOSTOOLs [27] parser and solvers such as
Sedumi [28].

A. Example I

We use the same example from [7]. Suppose the MDPM
has three states Q = {q1, q2, q3} representing different inven-
tory levels of a company. The states q2, q3 ∈ Qs correspond
to the low and high inventory levels, respectively, and are the
secret states. If the intruder, say a competitor or a supplier,
has information over the current inventory levels being high
or low, they may manipulate the price of the goods, and
thus negatively affect the company’s profit. Therefore, it is
of the company’s interest to conceal the inventory levels from
the potential intruders. q1 is a non-secret state representing
the normal inventory level. A = {σ1, σ2} represents two
different actions denoting different purchasing quantities.
The initial condition is π(s1) = 0.1, π(s2) = 0.2, π(s3) =
0.2. The transition probabilities are as shown in the following
matrices for action σ1 and σ2, Hσa

(i, j) = T (qj , σ, qi).

Hσ1
=

0.15, 0.2, 0.3
0.45, 0.2, 0.2
0.4, 0.6, 0.5

 , Hσ2
=

0.25, 0.35, 0.1
0.25, 0.1, 0.5
0.5, 0.55, 0.4


(26)

The randomness of the inventory level after the purchasing
action is due to the random demand levels. The privacy
requirement is

bt(q2) + bt(q3) ≤ γ,∀t. (27)

Based on Corollary 2, we check whether the above privacy
requirement is satisfied for γ = 0.85. The SDPs (15) to
(17) are solved certifying that the privacy requirement (27)
is satisfied, where we found the following barrier certificate
(up to 0.01 precision) in 2.5803 seconds

B(b̄) =
b(q1)
b(q2)
b(q3)

1


T 

2.98 −0.83 −0.61 0
−0.83 0.07 3.89 0.92
−0.61 3.89 −1.33 −0.74

0 0.92 −0.74 1.72



b(q1)
b(q2)
b(q3)

1

 .
Therefore, the high and low inventory levels are private.
Furthermore, in order to find the best achievable privacy
requirement, we decrease γ and search for a barrier certificate
based on Corollary 2. We could find the smallest value for
γ∗ = 0.42 below which no certificate for privacy verification
could be found.

B. Example II
Following our MDP example, besides the purchasing

action, the intruder may also have access to the intervals
between the two consecutive purchases, which suggests a
POMDP P model that has the same state space Q, initial
condition π, action set A, transition probabilities T . Ad-
ditionally, P has the observation set Z = {z0, z1} which
represents a short and a long purchasing intervals respec-
tively. The observation function is defined as below where
Oσ(i, j) = O(qi, σ, zj)

Oσ1 =

0.7, 0.3
0.5, 0.5
0.8, 0.2

 , Oσ2 =

0.8, 0.2
0.6, 0.4
0.2, 0.8

 . (28)

The privacy requirement is (27) with γ = 0.42 to make
sure that the inventory level being too high or too low is
not disclosed with confidence larger than 0.42. We check
the SOSPs (23) to (25) where fix the degree d of the barrier
certificate. We could not find a certificate for privacy even for
d = 10. In order to find an upper-bound on the achievable
privacy requirement, we increase the degree of the barrier
certificates from 2 to 10 and look for the smallest value of
γ, for which privacy verification could be certified. Table I
outlines the obtained results. As it can be observed from
the table, by increasing the degree of the barrier certificate,
we can find a tighter upper-bound on the best achievable
privacy level. The barrier certificate of degree 2 (excluding
terms smaller than 10−4) constructed using Corollary 4 is
provided below

B(b) = 0.1629b(q1)2 − 3.9382b(q2)2 + 09280b(q3)2

− 0.0297b(q1)b(q2)− 4.4451b(q2)b(q3)− 0.0027b(q1)

− 2.0452b(q2) + 9.2633.
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Fig. 1: The MDP in Example I

TABLE I: Numerical results for Example II.

d 2 4 6 8 10
γ∗ 0.93 0.88 0.80 0.74 0.69

Computation Time (s) 5.38 8.37 12.03 18.42 27.09

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method for privacy verification of MDPs
and POMDPs based on barrier certificates. We demonstrated
that the privacy verification can be carried out in terms of an
SDP problem for MDPs and an SOSP problem for POMDPs.
The method was applied to the privacy verification problem
of an inventory management system.

The formulation presented here assumes a unified barrier
certificate for all actions a ∈ A. A more conservative
but more computationally efficient approach to address the
privacy verification problem of MDPs and POMDPs is to
consider non-smooth barrier certificates, which are composed
of a the convex hull, max, or min a set of local barrier
certificates for different actions [29], [30].

In addition to privacy verification, the proposed method
based on barrier certificates can be used to design a sequence
of actions such that some given privacy requirement is satis-
fied. To this end, we follow the footsteps of the contributions
on synthesizing switching sequences such that some cost is
minimized [31].
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[13] H. Guéguen, M. Lefebvre, J. Zaytoon, and O. Nasri, “Safety verifica-
tion and reachability analysis for hybrid systems,” Annual Reviews in
Control, vol. 33, no. 1, pp. 25 – 36, 2009.

[14] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Computational
techniques for the verification of hybrid systems,” Proceedings of the
IEEE, vol. 91, no. 7, pp. 986–1001, July 2003.

[15] S. Prajna, “Barrier certificates for nonlinear model validation,” Auto-
matica, vol. 42, no. 1, pp. 117 – 126, 2006.

[16] S. Han, U. Topcu, and G. J. Pappas, “A sublinear algorithm for barrier-
certificate-based data-driven model validation of dynamical systems,”
in 2015 54th IEEE Conference on Decision and Control (CDC), Dec
2015, pp. 2049–2054.

[17] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, “Safety ver-
ification for distributed parameter systems using barrier functionals,”
Systems & Control Letters, vol. 108, pp. 33 – 39, 2017.

[18] M. Ahmadi, A. W. K. Harris, and A. Papachristodoulou, “An
optimization-based method for bounding state functionals of nonlinear
stochastic systems,” in Decision and Control (CDC), 2016 IEEE 55th
Conference on. IEEE, 2016, pp. 5342–5347.

[19] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, June 2017.

[20] R. Wisniewski and C. Sloth, “Converse barrier certificate theorems,”
IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1356–
1361, May 2016.

[21] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[22] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.



[23] M. Hauskrecht, “Value-function approximations for partially observ-
able Markov decision processes,” Journal of Artificial Intelligence
Research, vol. 13, no. 1, pp. 33–94, Aug. 2000.

[24] I. Polik and T. Terlaky, “A survey of the S-lemma,” SIAM Review,
vol. 49, no. 3, pp. 371–418, 2007.

[25] M. Johansson, “Piecewise linear control systems,” Ph.D. dissertation,
Lund Institute of Technology, 1999.
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APPENDIX

A. Sum-of-Squares Polynomials

A polynomial p(x) is a sum-of-squares polynomial if
∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such that p(x) =

∑
i p

2
i (x).

Hence p(x) is clearly non-negative. A set of polynomials
pi is called SOS decomposition of p(x). The converse
does not hold in general, that is, there exist non-negative
polynomials which do not have an SOS decomposition [32].
The computation of SOS decompositions, can be cast as an
SDP (see [33], [32], [34]). The Theorem below proves that,
in sets satisfying a property stronger than compactness, any
positive polynomial can be expressed as a combination of
sum-of-squares polynomials and polynomials describing the
set.

For a set of polynomials ḡ = {g1(x), . . . , gm(x)}, m ∈ N,
the quadratic module generated by m is

M(ḡ) :=

{
σ0 +

m∑
i=1

σigi|σi ∈ Σ[x]

}
. (29)

A quadratic module M ∈ R[x] is said archimedean if ∃N ∈
N such that

N − |x|2 ∈M.

An archimedian set is always compact [35]. It is the possible
to state [36, Theorem 2.14]

Theorem 2 (Putinar Positivstellensatz): Suppose the
quadratic module M(ḡ) is archimedian. Then for every
f ∈ R[x],

f > 0 ∀ x ∈ {x|g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⇒ f ∈ (ḡ).
The subsequent proposition formalizes the problem of

constrained positivity of polynomials which is a direct result
of applying Positivstellensatz.

Proposition 1 ([37]): Let {ai}ki=1 and {bi}li=1 belong to
P , then

p(x) ≥ 0 ∀x ∈ Rn : ai(x) = 0, ∀i = 1, 2, ..., k

and bj(x) ≥ 0, ∀j = 1, 2, ..., l (30)

is satisfied, if the following holds

∃r1, r2, . . . , rk ∈ R[x] and ∃s0, s1, . . . , sl ∈ Σ[x]

p =
∑k
i=1 riai +

∑l
i=1 sibi + s0 (31)

Proposition 2: The multivariable polynomial p(x) is
strictly positive (p(x) > 0 ∀x ∈ Rn), if there exists a λ > 0
such that (

p(x)− λ
)
∈ Σ[x]. (32)


