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Abstract— We study one-dimensional integral inequalities
on bounded domains, with quadratic integrands. Conditions
for these inequalities to hold are formulated in terms of
function matrix inequalities which must hold in the domain
of integration. For the case of polynomial function matrices,
sufficient conditions for positivity of the matrix inequality and,
therefore, for the integral inequalities are cast as semi-definite
programs. The inequalities are used to study stability of linear
partial differential equations.

Keywords: Sum of Squares, Stability Analysis, Distributed
Parameter Systems, PDEs.

I. INTRODUCTION

Emerging applications [1]–[5] (Magnetohydrodynamics,
fluids, population dynamics) and stringent performance re-
quirements have driven control engineering research interests
towards systems described by partial differential equations
(PDEs), that is, equations involving derivatives with respect
to more than a single independent variable. Most commonly,
the set of independent variables are temporal and spatial
variables and the domain of the solutions to the PDE is
unbounded for the temporal variable and bounded, in a
spatial domain, for the spatial variable.

The study of properties of solutions to PDEs, such as
stability, parallels the study of ordinary differential equations
(ODEs) in several aspects. As for ODEs, conditions for
stability of the zero solution can be formulated from spectral
analysis when the PDE system is defined by a linear operator.
Moreover, it is possible to infer stability from the semi-
group generated by linear or nonlinear operators which is
analogous to the ODE approach of computing solutions to
establish stability of a particular solution [6]. An alternative
approach relies on the Lyapunov method, extended to infinite
dimensional systems in [7] and [8], which does not require
the semi-groups to be calculated. The energy of the state,
(which for PDEs is defined in terms of an inner product in a
functional space instead of an Euclidean one), is a frequent
choice for the Lyapunov functional (LF) since it simplifies
the analysis of the large class of nonlinear PDE systems with
energy-preserving nonlinearities [9].

Several numerical approaches for the analysis and con-
trol design of PDE systems rely on ODE approxima-
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tions, obtained by spectral truncation or spatial discretiza-
tion [10], [11], instead of directly addressing the PDE
representation. Regarding Lyapunov stability analysis with
the PDE representation, even for one-dimensional spatial
domains and constant coefficients, existing analysis results
rely on analytical steps [9]. These steps present increasing
complexity for systems of several dependent variables, for
systems with spatially varying properties (inhomogeneous
systems) and for LF integrands depending on the spatial
variable.

Among the numerical methods for ODEs, the ones based
on semi-definite programming (SDP), a class of convex opti-
mization problems, have been successfully applied to control
problems with polynomial data. Among these problems, one
can cite stability of time-delay systems [12], synthesis of
polynomial control laws [13] [14], robustness analysis of
polynomial systems [15] giving sum-of-squares programs
(SOSP), while the primal formulation of the SOSP, the
generalised problem of moments [16], has been applied to
optimal control problems [17] and system analysis [18].

The connection of polynomial inequalities to semi-definite
constraints is possible thanks to the non-uniqueness of
quadratic-like representation of polynomials (parametrised
by Gram matrices [19]). Similarly, we have non-uniqueness
of integral expressions with integrands being quadratic ex-
pressions on the dependent variables and its derivatives,
however, such a property has not yet been explored in the
context of SDP. A hint on this direction for integral operators
was reported in [20].

With the purpose of formulating numerical tests for the
analysis of PDE systems, this paper studies one-dimensional
integral inequalities whose integrands are polynomial func-
tions of the independent spatial variables, and quadratic
functions of the dependent variables and their spatial deriva-
tives. The fundamental theorem of calculus (FTC) is the key
step to relate the dependent variables and their derivatives
in an integral expression and therefore obtain a set of
representations of the integral. The matrices on the obtained
quadratic expressions depend on the spatial variables and its
entries are related to the boundary values of the dependent
variables. This way, the positivity check of the integral on
the domain is then performed by the positivity check of the
matrix inequalities. We rely on the Positivstellensatz [21] in
order to generate SOSPs yielding, therefore, a problem to be
solved numerically.

Numerical solutions to integral inequalities are then ob-
tained in the context of stability analysis of the L2 norm
of systems of inhomogeneous PDEs with weighted L2 norm
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as LF candidates. Examples illustrating these solutions are
given by: computation of bounds for the Poincaré inequali-
ties, the stability of the heat equation with spatially varying
coefficients and of the transport equation.

Notation Let R, R≥0, R>0 and R
n denote the field of

reals, non-negative reals, positive reals and the n-dimensional
Euclidean space respectively. The sets of natural numbers
and positive natural numbers are denoted N

n, N
n
0 . The

closure of set Ω is denoted Ω. The boundary ∂Ω of set
Ω is defined as Ω \ Ω with “\” denoting set subtraction.
The ring of polynomials, the ring of positive polynomials,
and the ring of sum-of-squares polynomials on real variable
x ∈ R are respectively denoted R[x], P [x] and Σ[x]. The
ring of Sum-of-squares matrices of dimensions n is denoted
Σn×n[x]. The degree of a polynomial p(x) on variable x

is denoted deg(p). The set of functions in a Hilbert space
H on Ω are denoted H(Ω). We denote the the space of
measurable functions defined on Ω as u ∈ L2

Ω, the spatial

L2
Ω-norm by ‖u(t)‖2,Ω =

(∫

Ω
uT (t, x)u(t, x)dx

)
1

2 and use
L2

P,Ω to denote the weighted L2 norm ‖u(t)‖(2,P ),Ω =
(∫

Ω uT (t, x)P (x)u(t, x)dx
)

1

2 . The set of continuous func-
tions mapping Ω into R

n, k-times differentiable and with
continuous derivatives is denoted Ck(Ω). For p ∈ C1(Ω), the
derivative of p with respect to variable x is denoted ∂xp, and
∂r

xu := ∂x(∂r−1
x u). For u ∈ Ck, α ∈ N

n
0 , define

Dαu := (u1, ∂xu1, . . . , ∂
α1

x u1, . . . , ∂xun, . . . , ∂αn
x un) .

Define the order of Dαu as ord(Dαu) := maxj αj . We
use He(·) to denote the linear operator He(A) = A + AT .
For a symmetric matrix A denote A ≥ 0 (A > 0) if A

is positive definite (semi-definite). The elementwise product
of two vectors a, b is denoted a ⊙ b while the elementwise
inequality is denoted a � b.

Consider αθ = θ1n, θ ∈ N, define

vθ(u(x)) := Dαθu. (1)

The vector vθ contains all derivatives of variable u with
respect to x up to order θ. Variable u is the dependent
variable and x ∈ Ω ⊂ R the independent variable.

II. POSITIVE FUNCTIONALS AND POLYNOMIAL

INTEGRANDS

Consider integral inequalities of the form
∫

Ω

f̄(x, vθ(u))dx ≥ 0, (2)

with Ω = [0, 1], and

u ∈
{

u ∈ L2,Ω|B
[

vθ−1(u(1))
vθ−1(u(0))

]

= 0

}

(3)

with B ∈ R
nb×2n(θ−1).

Assume that f̄ is quadratic on the second argument for
any value of the first argument, that is

f̄(x, vθ(u)) = vT
θ (u)F (x)vθ(u). (4)

It is further assumed that F (x) ∈ C0(Ω).

The remaining of this section aims to derive conditions
for (2) to hold in terms of expressions involving only F (x)
in the integrand (4) and the boundary values of the dependent
variable as defined in (3). To this aim, the following result
is fundamental.

Lemma 1: Consider r : Ω → R
nr , r ∈ C1. If there exists

a vector function h : Ω → R
nr , h ∈ C1 satisfying h(x) ⊙

r(u(x)) � 0 for x ∈ ∂Ω, then
∫

Ω

[

d

dx
h (x) ⊙ r (x) + h(x) ⊙ d

dx
r (x)

]

dx ≤ 0 (5)

Proof: From the fundamental theorem of calculus, one
has

h(x) ⊙ r(x)|∂Ω =

∫

Ω

[

d

dx
(h(x) ⊙ r(x))

]

dx

=

∫

Ω

[

d

dx
h (x) ⊙ r (x) + h(x) ⊙ d

dx
r (x)

]

dx,

since h(x) ⊙ r(x) � 0 for x ∈ ∂Ω, one obtains (5).
Whenever r(x) is a vector of monomials on the entries

of vθ(u(x)), the integrand in (5) relates the monomials
explicitly accounting for the dependence of u on variable x

as follows.
Corollary 1: Consider v

{2}
θ−1(u), the vector containing all

monomials of degree 2 on vθ−1, and the set

H(θ) :=
{

h ∈ C1(Ω) : h(x) ⊙ v
{2}
θ−1(u)|∂Ω � 0

}

. (6)

If h ∈ H(θ), then
∫

Ω

d

dx
h(x) ⊙ v

{2}
θ−1(u) + h(x) ⊙ Cv

{2}
θ (u)dx � 0, (7)

where C is the matrix satisfying d
dx

v
{2}
θ−1(u) = Cv

{2}
θ (u).

The corollary is proven by considering r(x) = v
{2}
θ in (5).

Example 1 Consider Ω = [0, 1], u = u1, that is,
n = 1 and take θ = 2. The set in (6), is defined with
v
{2}
θ = (u2(x), u(x)∂xu(x), (∂xu(x))2). Consider u(t, 0) =

u(t, 1) = 0. The hypothesis of Corollary 1 holds with h(x) =
(h1(x), h2(x), h3(x)) satisfying h3(0) ≤ 0 and h3(1) ≤ 0
and arbitrary values for h1 and h2 at the boundaries since
u2(t, 1) = u2(t, 0) = u(t, 1)∂xu(t, 1) = u(t, 0)∂xu(t, 0) =
0. If instead the values at the boundaries are given by
u(t, 0) = u(t, 1), ∂xu(t, 0) = ∂xu(t, 1), the hypothesis is
satisfied with h1(1) − h1(0) ≤ 0, h2(1) − h2(0) = 0 and
h3(1) − h3(0) ≤ 0.

Define h̄ as the integrand in, that is (7) h̄ := d
dx

h(x) ⊙
v
{2}
θ−1(u)+h(x)⊙Cv

{2}
θ (u) which is a vector of nr elements,

quadratic on the dependent variables vθ. We can then write
∑nr

i h̄(x, vθ(u)) = vT
θ H(x)vθ , (8)

with k̄ =
⌈

k
2

⌉

.

Example 2 Consider h(x) and v
{2}
θ as in Example 1, then

h̄ =

2

4

dh1

dx
u

2 + 2h1u
2
∂xu

dh2

dx
u∂xu + h2(u∂xxu + (∂xu)2)

dh3

dx
(∂xu)2 + 2h3u∂xu

3

5
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the matrix H(x) in (8) is given by

H(x) =





dh1

dx
h1 + 1

2
dh2

dx
1
2h2

h1 + 1
2

dh2

dx
h2 + dh3

dx
h3

1
2h2 h3 0



 .

Remark 1: Recall that, from the definition of H(θ), in-
formation about the values of the dependent variables at the
boundaries define the values at the boundary of the entries
of H(x). ⋆

Proposition 1: If ∃h ∈ H(θ), such that

T (x) := F (x) + H(x) ≥ 0 ∀x ∈ Ω (9)

with F (x) and H(x) respectively as in (4) and in (8), then
inequality (2) holds.

Proof: Consider h ∈ H(θ) such that T (x) ≥ 0 then

0 ≤
∫

Ω

vT
θ T (x)vθdx

=
∫

Ω
vT

θ [F (x) + H(x)] vθdx

=
∫

Ω vT
θ F (x)vθdx +

∫

Ω vT
θ H(x)vθdx

=
∫

Ω f̄(x, vθ(u))dx +
∫

Ω

∑nr

i=1 h̄i(x, vθ(u))dx

≤
∫

Ω
f̄(x, vθ(u))dx.

(10)

Remark 2: Since the elements of H(x) involve contin-
uously differentiable functions and their derivatives, (9) is
a differential matrix inequality. If we further assume that
the functions h and f are polynomials on x, it is possible
to formulate convex feasibility problem to solve (9) as
presented in the next section. ⋆

III. POSITIVITY IN THE DOMAIN

The case of T (x) in (9) being a polynomial on variable x is
addressed in this section. The following result is a straight-
forward application of the Putinar’s Positivstellensatz (see
Theorem 2 in the appendix) to (9), to hold in the set Ω =
[0, 1], characterized as the semi-algebraic set {x|x(1− x) ≥
0}.

Corollary 2: If there exists N(x) ∈ ΣnM×nM [x] such that

T (x) − N(x)x(1 − x) ∈ ΣnM×nM [x] (11)

then (9) holds.
Remark 3: Whenever T (x) and N(x) are unknown with

affine in a set of variables, (for instance when coefficients of
f̄ and h are set as variables), the above test can be formulated
as a SDP whose dimension depends on the degree of the
polynomials in variables x. ⋆

IV. STABILITY ANALYSIS FOR DISTRIBUTED

PARAMETER SYSTEMS

We consider the following PDE system

∂tu = Au, u(x, 0) = u0(x) ∈ M ⊂ H(Ω) (12)

where H(Ω) is an infinite-dimensional Hilbert space and
A is a linear operator defined on M, a closed subset
of H(Ω). It is assumed that A generates a linear semi-group

of contractions, i.e. continuous solutions to the PDE exist in
M and are unique [6].

Consider candidate Lyapunov functions of the form

V (u) =
1

2
‖u‖2

2,P =
1

2

∫

Ω

uT P (x)u dx, P (x) > 0 ∀x ∈ Ω,

(13)
for fixed t > t0. The following lemma states the equivalence
of the weighted norm and the L2-norm.

Lemma 2: If P (x) > 0 ∀x ∈ Ω̄ then the norms
‖u‖2,P (x) and ‖u‖2 are equivalent.

Proof: Let λM (P, Ω) := maxΩ̄(λ(P (x))), λm(P, Ω) =
minΩ̄(λ(P (x))). One has

‖u‖2
2,P (x) =

[
∫

Ω

uT P (x)u dx

]

≤ λM (P, Ω)

[
∫

Ω

uT u dx

]

= λM (P, Ω)‖u‖2
2 (14)

‖u‖2
2,P (x) =

[
∫

Ω

uT P (x)u dx

]

≥ λm(P, Ω)

[
∫

Ω

uT u dx

]

= λm(P, Ω)‖u‖2
2. (15)

Therefore
√

λm(P, Ω)‖u‖2 ≤ ‖u‖2,P (x) ≤
√

λM (P, Ω)‖u‖2.

The following proposition is a Lyapunov result for the
exponential convergence of the L2 norm of the solutions
to (12):

Theorem 1: Suppose there exists a function V is a func-
tional V (0) = 0, and scalars c1, c2, c3 ∈ R>0 such that

c1‖u‖2,Ω ≤ V (u) ≤ c2‖u‖2,Ω (16)

dV

dt
(u) ≤ −c3‖u‖2,Ω (17)

then the L2 norm of the trajectories of (12) satisfy

‖u(t, x)‖2,Ω ≤ c2

c1
‖u(t0, x)‖2,Ωe

− c3
c1

(t−t0)
. (18)

Proof: From (16)-(17) one obtains
dV
dt

(u)

V (u)
≤ −c3

c1

since
dV
dt

(u)

V (u) = d(ln(V (u)))
dt

, the integral of the above expres-
sion over [t0, t], gives

∫

[t0,t]
d(ln(V (u(τ,x))))

dτ
dτ ≤ −c3

c1
(t − t0)

ln(V (u(t, x))) − ln(V (u(t0, x))) ≤ −c3

c1
(t − t0)

V (u(t, x))

V (u(t0, x))
≤ e

−
c3

c1
(t−t0)

V (u(t, x)) ≤ V (u(t0, x))e
−

c3

c1
(t−t0)

finally (18) is obtained by applying the bounds of (16) on
the above inequality.
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Corollary 3: If there exists a symmetric matrix P (x) and
positive scalars ǫ1, ǫ2 such that, for t held fixed

1

2

∫

Ω

(

uT P (x)u − ǫ1u
T u

)

dx ≥ 0, (19)

−
∫

Ω

(

uT P (x)Au + ǫ2u
T u

)

dx ≥ 0. (20)

Then the L2 norm of solutions to (12) satisfy (18).

V. EXAMPLES

In this section, we obtain solutions to the integral inequal-
ities using the formulation developed in Sections II and III.

A. Poincaré inequality

The Poincaré inequality [23, p.163]
∫

Ω

u2dx ≤ κ

∫

Ω

(∂xu)2dx (21)

u(t, 0) = u(t, 1) = 0 where Ω is a bounded domain and κ is
a constant depending on the domain, holds for all u, ∂xu ∈
L2

Ω and establishes bounds for ‖u‖2
2 in terms of ‖∂xu‖2

2.
By rewriting the above inequality as

∫

Ω

(

κ(∂xu)2 − u2
)

dx ≥ 0 (22)

one obtains an integral constraint of the form (2). Notice
that the integrand is affine on κ. Tight bounds for (21) are
obtained by solving

minimize κ

subject to
∫

Ω

(

κ(∂xu)2 − u2
)

dx ≥ 0.
(23)

The steps described in Section II are followed by first
noticing that the integrand of (22) involves only u and
its spatial derivative ∂xu, therefore let θ = 1 in (7) and
vθ−1(u) = u2. Following Proposition 1, the problem (23)
becomes

minimize κ

subject to

[

−1 + dh(x)
dx

h(x)
h(x) κ

]

≥ 0, ∀x ∈ Ω.
(24)

Assuming h(x) to be of polynomial form, Ω = [0, 1] and
applying Positivstellensatz as described in Section III, (24)
becomes the following SOSP

minimize κ

subject to

[

−1 +
dh(x)

dx
h(x)

h(x) κ

]

+ N(x)x(x − 1) ∈ Σ2×2[x],
N(x) ∈ Σ2×2[x].

(25)
The problem (25) is formulated and solved using SOS-
TOOLS [24] considering different degrees for polynomial
h(x) and N(x). Figure 1 depicts the optimal value κ∗ as
a function of the degree of h(x) (the curve was computed
setting deg(N(x)) = deg(h(x))+2). The figure also presents
the optimal bound π−2 for the studied domain [25].

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

 

deg(h)

κ∗

Fig. 1. Optimal values for problem (25) as a function of the degree of
h(x).

B. The transport equation

Consider the following PDE

∂tu = −∂xu x ∈ [0, 1], t > 0 u(t, 0) = 0.

Let Ep :=
1

2

∫

Ω
e−λxu2dx be the candidate function to

certify −λEp − dEp

dt
≥ 0 that is, to certify exponential

stability with exponential rate λ > 0. One has

−λEp − dEp

dt
=

∫

Ω

(

−λ

2
e−λxu2 + e−λxu∂xu

)

dx ≥ 0,

(26)
which is an inequality as (2). Consider η2(v1(u)) = u2

and h(x) = − 1
2e−λx. Since h(1) = − 1

2e−λ < 0, one has
h(1)u2(1) − h(0)u2(0) = h(1)u2(1) ≤ 0, hence h(x) ∈
H(1) and

h(x)η2(v1(u))|∂Ω = h(1)u2(t, 1)

=

∫

Ω

(

hxu2 + hu∂xu
)

dx

=

∫

Ω

(

1

2
λe−λxu2 − e−λxu∂xu

)

dx ≤ 0

where equality holds only if u(t, 1) = 0. Adding up −λEp−
dEp

dt
and h(1)u2(t, 1) one obtains

− λEp − dEp

dt
+ h(1)u2(t, 1)

=

∫

Ω

(

−λ

2
e−λxu2 + e−λxu∂xu

)

dx

+

∫

Ω

(

λ

2
e−λxu2 − e−λxu∂xu

)

dx = 0

therefore

−λEp − dEp

dt
= −h(1)u2(t, 1),

since −h(1)u2(t, 1) ≤ 0, exponential stability of the zero
solution is proven for any convergence rate λ > 0. This
result should be expected as, for a compact and bounded
domain, the transport equation is finite-time stable.

By considering inequalities (19)-(20) with a polynomial
weighting function and considering polynomial h(x) ∈
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H(1), the Positivstellensatz is applied to formulate the fol-
lowing feasibility SOSP

find p(x), h(x), N(x)
subject to

He

(

1

2

[

−λp(x) + dh(x)
dx

−p(x) + h(x)
0 0

])

+ N(x)x(x − 1) ∈ Σ2×2[x],
N(x) ∈ Σ2×2[x].

(27)

With a polynomial p(x) of degree 30 stability of the zero
solution to (26) was certified for λ ∈ (0, 10]. The results are
depicted in Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

  

x

p(x)

Fig. 2. Weighting functions proving exponential stability for convergence
rates λ ∈ {2, 10}. The red dotted curves depict the analytical result 1

2
e−λx

while the solid blue lines are correspond to the polynomials obtained by
solving (27).

C. Heat Equation with Reaction Term

Consider the following inhomogeneous PDE

∂tu = ∂2
xu + λ(x)u, x ∈ [0, 1], u(t, 0) = u(t, 1) = 0 (28)

where, λ : [0, 1] → R. When λ(x) = λc, the Lyapunov
functional

∫ 1

0
u2 dx, proves asymptotic stability for λc ∈

(−∞, π2). In order to study the exponential stability of (28),
we consider a weighted L2 function as (13).

In [20] the system was studied with λ(x) = λc and
employing an ad hoc integration by parts construction to
obtain a tight estimate for the stability interval. Here λ(x)
is considered as λ(x) = λc − 24x + 24x2 and a line search
was performed to maximize the coefficient λc for which the
zero solution is stable. We obtained the value λ∗

c = 14.1
by solving (19)-(20) with a polynomial weighting function.
Figure 3 depicts λ(x) with λc = λ∗

c . The stability bound for
a constant coefficient λ(x) = π2, is also depicted. Notice
that λ(x) > π2 for x ∈ [0, 0.2209) ∪ (0.7791, 1]. The
obtained weighting function p(x), a polynomial of degree
10 is illustrated in Figure 4.

VI. CONCLUSION

This paper has formulated conditions for the positivity of
integral inequalities in terms of positivity of their integrands
by characterizing a set of expressions constructed from the
Fundamental Theorem of Calculus. The main assumption
is that the functionals under study are quadratic on the

0 0.2 0.4 0.6 0.8 1

8

10

12

14

x

λ(x)

Fig. 3. The spatially varying coefficients λ = π2 (dashed black) λ(x) =
λc − 24x + 24x2 (solid red).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

x

p(x)

Fig. 4. The weighting function p(x) for system (28).

dependent variables. The case of polynomial dependence
of the integrand on the independent variable allows for
the formulation of a convex optimization problem given
by SDPs.

These formulations were then used to study integral in-
equalities arising from Lyapunov stability conditions for
PDEs and examples illustrate the effectiveness of the pro-
posed approach.

Polynomial parametrization of the weighting functions on
the Lyapunov functionals is not restrictive since, according to
Weierstrass approximation theorem, any continuous function
on a bounded interval can be approximated by a polynomial,
as illustrated by Figure 2 in Example V-B. The drawback is
that the degree of the approximating polynomial may not
be known a priori. The main source of conservativeness of
the presented conditions is related to the fact that we only
consider weighted energy as linear functionals.

The research leading to the results presented here was
motivated from the fact that integration by parts is a crucial
step when proving stability analytically. Another important
step is accounting for the size of the domain which is usually
performed by considering embedding theorems on bounded
domains. Our goal is to perform these steps by solving semi-
definite programs.

We believe the results presented in Sections II and III go
beyond the scope of stability analysis of PDEs, and provide
an efficient method of formulating a set of optimization
problems with integral constraints in a convex optimization
framework.
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APPENDIX

A. Sum-of-Squares Polynomials

A polynomial p(x) is a sum-of-squares (SOS) polynomial
if ∃pi(x) ∈ R[x], i ∈ {1, . . . , nd} such that p(x) =
∑

i p2
i (x). Hence p(x) is clearly non-negative. A set of

polynomials pi satisfying the above property is called SOS
decomposition of p(x). The converse does not hold in
general, that is, there exist non-negative polynomials which
do not have an SOS decomposition [26]. The computation
of SOS decompositions, can be cast as an SDP (see [19],
[26], [27]). The theorem below proves that, in sets satisfying
a property slightly stronger than compactness, any positive
polynomial can be expressed as a combination of sum-of-
squares polynomials and polynomials describing the set.

For a set of polynomials ḡ = {g1(x), . . . , gm(x)}, m ∈ N,
the quadratic module generated by m is

M(ḡ) :=

{

σ0 +

m
∑

i=1

σigi|σi ∈ Σ[x]

}

. (29)

A quadratic module M ∈ R[x] is said archimedean if ∃N ∈
N such that

N − ‖x‖2
2 ∈ M.

An archimedian set is always compact [28]. It is the possible
to state [16, Theorem 2.14]

Theorem 2 (Putinar Positivstellensatz): Suppose the
quadratic module M(ḡ) is Archimedian. Then for every
f ∈ R[x],

f > 0 ∀ x ∈ {x|g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⇒ f ∈ (ḡ).
Lemma 3: The set Ω = [0, 1] is Archimedean.

Take any pair (r, N∗), r ∈ R>0 and N∗ ∈ N satisfying

N∗ ≥ 1

4

r2

r − 1
. (30)

r 6= 1. The Archimedean property is then satisfied with

θ0(σ) =
(

(√
r − 1

)

σ − 1
2

r√
r−1

)2

+
(

N∗ − 1
4

r2

(r−1)

)

θ1(σ) = r.
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