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Abstract. The large modeling uncertainties and the nonlinearities associated with air manifold and 

fuel injection in spark ignition (SI) engines has given rise to difficulties in the task of designing an 

adequate controller for air-to-fuel ratio (AFR) control. Although sliding mode control approaches 

has been suggested, the inescapable time-delay between control action and measurement update 

results in chattering. This paper proposes the implementation of a nonlinear observer based control 

scheme incorporating the hybrid extended Kalman filter (HEKF) and the dynamic sliding mode 

control (DSMC). The results established upon the proposed methodology are given which 

demonstrate superior performance in terms of reducing the chattering magnitude. 

Nomenclature 

apm�  Air mass flow in cylinder (kg/s) 

atm�  Air mass flow past throttle plate (kg/s) 

fm�  Cylinder port fuel mass flow (kg/s) 

fvm�  Fuel vapor mass flow (kg/s) 

fim�  Injected fuel mass flow (kg/s) 

n  Crank shaft speed (Kilo revolution per minute) 

ap  Atmospheric pressure (1.013 bar) 

aT  Atmospheric temperature (Kelvins) 

fX  Fraction of fim� that is deposited on manifold as fuel film 

uH  Fuel lower heating value ( 4103.4 ×  kJ/kg) 

iη  Indicated efficiency 

ip  Manifold pressure ( bars) 

iT  Manifold temperature (Kelvins) 

lP  Pumping and friction power ( kW) 

bP  Load Power (kW) 

R  Gas constant ( 510287 −× J.bar/kg.K.Pa) 

I  Crank shaft load inertia (kg.m
2
) 

dV  Engine displacement (liters) 

iV  Manifold+port passage volume (m
3
) 

Introduction 

Owing to the ever increasing regulations on exhaust emissions, the AFR control has received 

overwhelming attention in literature [1-6]. A conventional method to meet the emission standards is 

to use a 3-way catalytic converter which simultaneously oxidizes and decreases the exhaust 

pollution. However, the catalyst is quite sensitive to the AFR, and it has been observed that the 

optimal catalyst performance is achieved when the AFR is maintained at its stoichiometric value at 

14.67. Slight deviations from the stoichiometric value can lead to considerable increase in pollutant 

gas (e.g. HC, CO and NOx) emission levels [6-10]. Thus, the goal of an apt control strategy should 
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be to strictly control the AFR to remain constant at 14.67. In addition, a candidate control approach 

should be robust since the engine could operate in different operating points, different 

environmental conditions, and with different aging history of components. 

Technically, the overall AFR is controlled via the injection system. Hence, the controlling 

methods are focused on this section of the SI engine. Previous studies have shown that the sliding 

mode control (SMC) algorithm which is in accordance with the binary nature of the oxygen sensor 

signal stands as an outstanding option for fuel injection control. The main drawback of the SMC is 

the occurrence of chattering in the neighborhood of the sliding surface.  This problem stems from 

the inevitable oxygen sensor time-delay and the measurement errors. The chattering problem limits 

the magnitude of the feedback gain; however, to satisfy the surface reaching condition, a specific 

quantity of gain is needed. In [9], the authors used adaptive neural networks for online estimation of 

physical parameters which led to the reduction of chattering. Ref. [10] suggests applying adaptive 

updating laws for two fueling   parameters that describe the fuel flow into the cylinders, and a third 

parameter that describes the air flow into the cylinders. The adaptive updating laws have brought 

about the possibility to decrease the sliding mode gain thus shrinking the oscillation amplitude 

caused by chattering. [11] compares the performance of a globally linearizing control (GLC) 

method with that of a SMC. Noticeably, the SMC outperforms the GLC with regard to robustness 

properties. 

To get around the problems caused by the uncertainties and nonlinearities of the overall model, 

sub-optimal filtering based algorithms can be exploited in order to estimate the process (ignition 

system) states from the noisy measurements. Following this trend, the EKF has been employed for 

state estimation in the system model [12-14]. 

In the proposed scheme in this paper, firstly the uncertain states such as the manifold temperature 

and pressure are estimated using the HEKF, subsequently based on the estimated states, the DSMC 

is applied to maintain the AFR in the desired level. Simulation results are included which validate 

the proposed control method’s efficiency. 

This paper is organized as follows. Section 2 describes the mean value engine model (MVEM) as 

implemented in this study. In section 3, the DSMC is outlined. The design of a nonlinear observer 

using the HEKF is delineated in section 4. The simulation results are provided in Section 5. The 

paper ends with conclusions in section 6. 

Engine Model Description 

Among the available internal combustion engine models available in open literature, the MVEM 

brought forward by Hendricks [15] is mathematically compact and can be readily parameterized for 

different engines. Therefore, our approach in this paper is also established upon the MVEM. In this 

study, the throttle opening angle α  and the injected fuel mass flow  fim�  are considered as the inputs 

and the AFR as the output of the model. The MVEM consists of three subsystems which are 

described next. 

 a) Fueling system: The fluid film flow model describes the dynamics of the fluid flow through 

the manifold. The fluid flow has two components: fuel vapor flow ( fvm� ) and the fuel film flow 

( ffm� ). The overall inlet fuel flow ( fm� ) is not measurable. The following equations describe the 

dynamics of the subsystem: 

( )fifff
f

ff mXmm ���� +−=
τ
1                                                       (1.a) 

fiffv mXm �� )1( −=                                                             (1.b)                  

fffvf mmm ��� +=                                                                (1.c) 

where fτ  is the fuel evaporation time constant which is both dependent on the engine type and 

operating conditions. [15] claims that these parameters can be computed as: 

56.0)15.006.0()825.0)(68.1672.0(35.1
2 ++−+−+−= npn ifτ                             (2.a) 

 68.0055.0277.0 +−−= npX if                                                      (2.b) 
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The normalized air-to-fuel ratio is denoted by   

f

ap

m

m

�

�

β
λ =                                                                        (3) 

where β signifies the stoichiometric ratio namely 14.67. It is worth noting that the time-delay 

associated with the fuel injection process should be considered. There are three major sources of 
delay: the sensor’s measurement delay, the time-delay resulted from the distance between exhaust 
ports and sensor locations, and the physical delay regarding the fuel flow which is a consequence of 
the finite rate of evaporation of the fuel film on the inlet manifold and port walls [7,8,10]. 
 
b) Crank shaft speed dynamics: This sub-model is derived from energy conservation laws. The 

crank shaft speed is calculated by 

( ) )(),,(
1

)(),(
1

dfiiubil tmnpH
nI

nPnpP
nI

n τλη −++−= ��                                       (4) 

where dτ is the torque-injection delay. 

c) Air flow system: The air mass passing through the manifold is represented by  
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in which 0atm , 1atm , 0u , and cp are all constant values. κ denotes the ratio of the specific heats ( 1.4 

for air). Moreover, instead of deriving a direct model for volumetric efficiency ve , it is rather 

convenient to use iv pe .  which is called the normalized air charge. The normalized air charge is given 

by 
( ) ( ) ( )nypnspe iiiiv +=.                                                            (6) 

where both ( )nsi  and ( )nyi are weak and positive functions of crank shaft speed and ii sy << . 

AFR Control using The DSMC 

The sliding surface is defined as [9, 10]: 

fap mmS �� β−=                                                                    (7) 

To ensure that the sliding surface reaches the sliding surface ( )0=S in a finite time, fim�  should be 

controlled such that the attraction condition is met 

SkSS −≤�                                                                        (8) 

where k  is a positive gain. In order to obtain the derivative of the sliding surface, one has to calculate 

apm��  and fm��  in advance. The derivatives are determined using Eqs. (1.a-1.c) as follows: 
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Thus, using Eqs. (7), (9.a-9.b) we have 
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The derivative of the control input )(tm fi�  can be chosen as 
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Note that the term ( ))(sgn dttS −  is the output of the binary oxygen sensor, where dt  denotes the 

sensor’s measurement delay. Substituting (11) in (10) yields 

( ))(sgn dip ttSSTKS −−−= η�                                                       (12) 

The sliding criteria (8) is guaranteed as 

STKkSTK ipip >+≥η                                                          (13) 

State Estimation Via The HEKF 

The nonlinear observer can be designed by considering the mathematical models for fuel injection 

system and the sensors. The system equations can be rewritten as follows 
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mmpimm vpp +=                                                            (14.b) 

mmTmsmm vTT +=                                                          (14.c) 

where mmp and mmT  are the measured manifold pressure and temperature, respectively. The state 

msT is associated with the temperature sensor with a time constant ( tτ ) of 0.2s. Also, the vector 

[ ]TTTp msii
wwww ,,=  is a continuous-time Gaussian process noise with a covariance matrix of Q , and 

[ ]TTp mmmm
vvv ,= is a discrete-time Gaussian measurement noise with a covariance matrix of kR such 

that Q and kR are statistically independent. Note that Q  and kR  are positive semi-definite and 

definite matrices, respectively. The system and measurement dynamics can be simplified as 

( ) wuxfx += ,�                                                                  (15.a) 

kkk vHxz +=                                                                  (15.b) 

in which [ ]Tmsii TTpx ,,=  represents the state vector, α=u  is the input, [ ]Tmmmm Tpz ,=  is the 

measurement vector, and f  consists of nonlinear functions given by (14.a). Based on the ignition 

system and sensor models, the HEKF estimation equations which are applied at each measurement 
time instance are given below [16]: 

( )uxfx ,ˆˆ =�                                                                      (16.a) 
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QPAAPP T ++=�                                                                (16.b) 

xx
x

uxf
A ˆ

),(
=∂

∂
=                                                                 (16.c) 

where P is the error covariance matrix, A is the linearized system matrix, and x̂ is the estimated state 
vector. The superscripts ‘+’ and ‘-‘ represent a posterior and a prior state estimate, respectively. 
Then, the HEKF updating rules are utilized to calculate the corresponding Kalman gain, state 
estimates and error covariance matrix. The updating rules are cited below 

( ) 1−−− += k
T

k
T

kk RHHPHPK                                                      (17.a) 

( )−−+ −+= kkkkk xHzKxx ˆˆˆ                                                            (17.b) 

( ) ( ) T
kkk

T
kkkk KRKHKIPHKIP +−−= −+                                              (17.c) 

wherein kK is the Kalman gain at time instance k and I denotes the identity matrix. 

Simulation Results 

The results given in this section are derived from the MVEM model for a 1275cc engine which is 

investigated by Hendricks in [15]. The throttle angle changes are illustrated in Fig.1. It should be 

noted that the speed of throttle angle alterations are exaggerated and in a real case the variations are 

more gradual. Furthermore, a random signal with a uniform distribution between 0-0.2 degrees is 

added to throttle angle which accounts for model uncertainties or disturbances. In order to model 

the drive by wire (DBW) actuator with its controller, a second-order low pass filter with un-damped 

natural frequency of sec/ 9.76 rad  and a damping parameter of 0.675 is adopted. The filter output is 

considered as the actual throttle angle [12,13]. Besides, all of the system time-delays are taken into 

account during simulations. 

The DSMC as described in section III is applied. The simulation results are depicted in Fig.2. As 

it is observed, there exist severe fluctuations around the stoichiometric value, and the algorithm’s 

performance is not satisfactory. To overcome the control failure, the closed loop control scheme 

using the HEKF state estimator and the DSMC is implemented. Fig.3 shows both the estimated 

pressure and actual measured pressure signal. The estimated and measured temperature is displayed 

in Fig.4, as well. Accordingly, the HEKF is able to precisely approximate the manifold pressure and 

temperature in the presence of noisy and uncertain measurements. Crank shaft speed changes are 

portrayed in Fig.5. Finally, Fig.6 demonstrates the proposed algorithm’s AFR control performance 

by incorporating HEKF, and DSMC. It is obvious that the chattering phenomenon which can lead to 

mechanical wear has been rigorously dwindled, and the AFR magnitude is maintained 

within %167.14 ±  except in instances where sudden transients of throttle angle signal are present. 

Another notable feature of the proposed algorithm is that despite abrupt changes in throttle angle, 

the AFR exhibits a relatively smooth response.  

Summary 

This paper considers the AFR control problem in SI engines. Firstly, the performance of the DSMC 

is examined and it is noticed that there exist considerable chattering oscillations. Then, a nonlinear 

observer established upon the HEKF is proposed. The functionality of the control approach based 

on the HEKF along with the DSMC is evaluated through simulations. The simulation results prove 

the proposed control scheme’s capability to maintain the AFR in the desired range. 
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Fig. 6   The AFR control results when the DSMC is 

accompanied by a HEKF estimator. 
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Fig. 5   Crank shaft speed variations n  
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Fig.4  The estimated manifold temperature iT̂ (pink), the estimated 

temperature from sensor msT̂ (blue), and the measured temperature mmT

(green). 
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Fig.2  AFR control results using the DSMC without the nonlinear  

observer. 
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Fig. 3  The estimated ip̂ (red) and measured manifold 

pressure mmp (green). 
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